车辆2D/3D--Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis
Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image
CVPR2017
https://arxiv.org/abs/1703.07570
自动驾驶 很快就可以达到实用的水平了。
本文的功能是:给一张灰度图像,使用 多任务CNN网络 Deep MANTA 可以给出6个信息: region proposal, detection, 2D box regression, part localization, part visibility and 3D template prediction,通过定义 Many-task loss functions 实现
先上图来个感性认识:
Deep MANTA 整个网络流程图如下所示:
Conv layers with the same color share the same weights
怎么从2D 信息推理出 3D 信息了?
首先我们利用了2个3D 的数据库 3D shape and template datasets
2D/3D vehicle model
数据标记问题怎么解决
Semi-automatic annotation process
- Experiments
http://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=6759889c0a252c63765d5e2e69cb8b1433cadb0a
Running time: 0.7 s
Environment: GPU @ 2.5 Ghz (Python + C/C++)