HOG特征中的Gamma校正原理

名字:零钱币
借鉴大佬的
https://blog.****.net/linqianbi/article/details/78617615
HOG特征中的Gamma校正原理

gamma校正原理:
  假设图像中有一个像素,值是 200 ,那么对这个像素进行校正必须执行如下步骤:
  1. 归一化 :将像素值转换为 0 ~ 1 之间的实数。 算法如下 : ( i + 0. 5)/256 这里包含 1 个除法和 1 个加法操作。对于像素 A 而言 , 其对应的归一化值为 0. 783203 。

2. 预补偿 :根据公式 , 求出像素归一化后的 数据以 1 /gamma 为指数的对应值。这一步包含一个 求指数运算。若 gamma 值为 2. 2 , 则 1 /gamma 为 0. 454545 , 对归一化后的 A 值进行预补偿的结果就 是 0. 783203 ^0. 454545 = 0. 894872 。

3. 反归一化 :将经过预补偿的实数值反变换为 0 ~ 255 之间的整数值。具体算法为 : f*256 - 0. 5 此步骤包含一个乘法和一个减法运算。续前 例 , 将 A 的预补偿结果 0. 894872 代入上式 , 得到 A 预补偿后对应的像素值为 228 , 这个 228 就是最后送 入显示器的数据。

如上所述如果直接按公式编程的话,假设图像的分辨率为 800*600 ,对它进行 gamma 校正,需要执行 48 万个浮点数乘法、除法和指数运算。效率太低,根本达不到实时的效果。
  针对上述情况,提出了一种快速算法,如果能够确知图像的像素取值范围 , 例如 , 0 ~ 255 之间的整数 , 则图像中任何一个像素值只能 是 0 到 255 这 256 个整数中的某一个 ; 在 gamma 值 已知的情况下 ,0 ~ 255 之间的任一整数 , 经过“归一 化、预补偿、反归一化”操作后 , 所对应的结果是唯一的 , 并且也落在 0 ~ 255 这个范围内。
  如前例 , 已知 gamma 值为 2. 2 , 像素 A 的原始值是 200 , 就可求得 经 gamma 校正后 A 对应的预补偿值为 228 。基于上述原理 , 我们只需为 0 ~ 255 之间的每个整数执行一次预补偿操作 , 将其对应的预补偿值存入一个预先建立的 gamma 校正查找表 (LUT:Look Up Table) , 就可以使用该表对任何像素值在 0 ~ 255 之 间的图像进行 gamma 校正。

简单的个人总结(不一定对)
对于图像上直观的看
HOG特征中的Gamma校正原理
Gamma越小灰度值越大
Gamma越大灰度值越小
0是黑,255是白
HOG特征中的Gamma校正原理

Gamma操作
给你一个像素在0-255中间
首先先进行归一化转换成0-1中间的数
然后 预补偿指定一个Gamma值,这个Gamma是指数,归一化的数据是底数
的出来一个还是0-1的一个数
然后进行反归一化,把这个值转换成0-255的