hadoop作业

3.hadoop1.x和hadoop2.x区别?haoop的发行版本有哪些?

在文件中2.5Hadoop组成
hadoop作业
Hadoop三大发行版本:Apache、Cloudera、Hortonworks。

Apache版本最原始(最基础)的版本,对于入门学习最好。

Cloudera在大型互联网企业中用的较多。

Hortonworks文档较好。

Cloudera:
(1)2008年成立的Cloudera是最早将Hadoop商用的公司,为合作伙伴提供Hadoop的商用解决方案,主要是包括支持、咨询服务、培训。
(2)2009年Hadoop的创始人Doug Cutting也加盟Cloudera公司。Cloudera产品主要为CDH,Cloudera Manager,Cloudera Support
(3)CDH是Cloudera的Hadoop发行版,完全开源,比Apache Hadoop在兼容性,安全性,稳定性上有所增强。
(4)Cloudera Manager是集群的软件分发及管理监控平台,可以在几个小时内部署好一个Hadoop集群,并对集群的节点及服务进行实时监控。Cloudera Support即是对Hadoop的技术支持。
(5)Cloudera的标价为每年每个节点4000美元。Cloudera开发并贡献了可实时处理大数据的Impala项目。

.Hortonworks Hadoop:

(1)2011年成立的Hortonworks是雅虎与硅谷风投公司Benchmark Capital合资组建。
(2)公司成立之初就吸纳了大约25名至30名专门研究Hadoop的雅虎工程师,上述工程师均在2005年开始协助雅虎开发Hadoop,贡献了Hadoop80%的代码。
(3)雅虎工程副总裁、雅虎Hadoop开发团队负责人Eric Baldeschwieler出任Hortonworks的首席执行官。
(4)Hortonworks的主打产品是Hortonworks Data Platform(HDP),也同样是100%开源的产品,HDP除常见的项目外还包括了Ambari,一款开源的安装和管理系统。
(5)HCatalog,一个元数据管理系统,HCatalog现已集成到Facebook开源的Hive中。Hortonworks的Stinger开创性的极大的优化了Hive项目。Hortonworks为入门提供了一个非常好的,易于使用的沙盒。
(6)Hortonworks开发了很多增强特性并提交至核心主干,这使得Apache Hadoop能够在包括Window Server和Windows Azure在内的Microsoft Windows平台上本地运行。定价以集群为基础,每10个节点每年为12500美元。

HDFS组成作用:

HDFS架构概述:
1)NameNode(nn):储存文件的元数据,如文件名,文件目录结构,文件属性(生成时间,副本数,文件权限),以及每个文件的块列表和块所在的DataNode等
2)DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。
3)Secondary NameNode(2nn):用来监控HDFS状态的辅助后台程序,每隔一段时间获取HDFS元数据的快照

YARN框架概述

hadoop作业
这里再打一遍加深映像
1)Resour onManager(RM)主要作用如下:
(1)处理客服端请求
(2)监控NodeManager
(3)启动或监控ApplicationMaster
(4)资源的分配与调度
2) NodeManager (NM)主要作用如下
(1)管理单个节点上的资源
(2)处理来自ResourceMarager的命令
(3)处理来自ApplicationMaster的命令
3)ApplicationMaster(AM)作用如下
(1)负责数据的切分
(2)为应用程序申请资源并分配给内部的任务
(3)任务的监控与容错
4)Container
Container是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存,CPU,磁盘,网络

MapReduce架构组成和作用

组成由Map和Reduce
Map阶段并行处理输入数据
Reduce阶段对Map结果进行汇总
MapReduce包括四个组成部分,分别是Client,JobTracker,TaskTracker,Task。

client客户端
每一个Job都会在用户端通过Client类将应用程序以及参数配置Configuration打包成Jar文件存储在HDFS,并把路径提交到JobTracker的master服务,然后由master创建每一个Task(即MapTask和ReduceTask),将它们分发到各个TaskTracker服务中去执行。

JobTracker
JobTracker负责资源监控和作业调度。JobTracker监控所有的TaskTracker与job的健康状况,一旦发现失败,就将相应的任务转移到其它节点;同时JobTracker会跟踪任务的执行进度,资源使用量等信息,并将这些信息告诉任务调度器,而调度器会在资源出现空闲时,选择合适的任务使用这些资源。在Hadoop中,任务调度器是一个可插拔的模块,用于可以根据自己的需要设计相应的调度器。

TaskTracker
TaskTracker会周期性地通过HeartBeat将本节点上资源的使用情况和任务的运行进度汇报给JobTracker,同时执行JobTracker发送过来的命令 并执行相应的操作(如启动新任务,杀死任务等)。TaskTracker使用“slot”等量划分本节点上的资源量。“slot”代表计算资源(cpu,内存等) 。一个Task获取到一个slot之后才有机会运行,而Hadoop调度器的作用就是将各个TaskTracker上的空闲slot分配给Task使用。slot分为MapSlot和ReduceSlot两种,分别提供MapTask和ReduceTask使用。TaskTracker通过slot数目(可配置参数)限定Task的并发度。

Task
Task分为MapTask和Reduce Task两种,均由TaskTracker启动。HDFS以固定大小的block为基本单位存储数据,而对于MapReduce而言,其处理单位是split。split是一个逻辑概念,它只包含一些元数据信息,比如数据起始位置、数据长度、数据所在节点等。它的划分方法完全由用户自己决定。但需要注意的是,split的多少决定了MapTask的数目,因为每一个split只会交给一个MapTask处理。

hadoop文件下的文件夹作用归纳:

bin目录:存放对Hadoop相关服务(HDFS,YARN)进行操作的脚本
etc目录:Hadoop的配置文件目录,存放Hadoop的配置文件
lib目录:存放Hadoop的本地库(对数据进行压缩解压缩功能)
sbin目录:存放启动或停止Hadoop相关服务的脚本
share目录:存放Hadoop的依赖jar包,文档,和官方案例