Deep Learning Models for Bone Suppression in Chest Radigraphs——论文笔记
Deep Learning Models for Bone Suppression in Chest Radigraphs
method
- Autoencoder-like convolutional model
共享相同但相映射的编码器和解码器权重。实际上是一个降噪过程,但是这个噪声不是一个正态分布,而是有结构(骨架)。
滤波器大小为5*5,stride=[1, 2, 2, 1].
loss=mse+ms-ssim - multilayer convolutional neural model
很简单的一个模型,滤波器大小为5*5,stride=[1, 1, 1, 1].
loss = mse + ms-ssim
- loss functions
见 Image Quality Assessment: From Error Visibility
to Structural Similarity
见Loss Functions for Neural Networks for Image Processing
-
experiment and result
a. data
35对数据,仿射变换到4000,旋转,上下左右颠倒,zoom,intensity shifts.horizontal and vertical shifts.随机crop,resized 440*440.应用clahe局部有限的直方图拉伸。标准化用方差和均值归一化。gt为双轮图像(two X-ray exposures at two different energy levels.)
b.result
可能存在以下缺点:
- 数据量太少,网络泛化能力不足
- ae-like模型和纯cnn模型没有给出定量评价,无法判断哪个最好
疑问:是否CNNs对结构型噪声存在很好效果?