无穷积分 ∫e^(-x^2)dx 的几种巧妙解法

  ex2dx\displaystyle\int_{-\infin}^{\infin}e^{-x^2}dx 是一个比较常见的无穷积分,在许多领域有着重要应用。

在此介绍几种巧妙的解法,供读者欣赏。

1. 极坐标变换

  (ex2dx)2=ex2dxey2dy=e(x2+y2)dxdy(极坐标变换)=02π0er2rdrdθ=(02πdθ)(120er2dr2)=2π12=π  ex2dx=π.\begin{aligned}\big(\int_{-\infin}^{\infin}e^{-x^2}dx\big)^2&=\int_{-\infin}^{\infin}e^{-x^2}dx\int_{-\infin}^{\infin}e^{-y^2}dy\\&=\int_{-\infin}^{\infin}\int_{-\infin}^{\infin}e^{-(x^2+y^2)}dxdy \quad(\textbf{极坐标变换})\\&=\int_{0}^{2\pi}\int_{0}^{\infin}e^{-r^2}rdrd\theta\\&=\big(\int_{0}^{2\pi}d\theta\big)\big(\frac{1}{2}\int_{0}^{\infin}e^{-r^2}dr^2\big)\\&=2\pi\frac{1}{2}=\pi\\ \therefore \,\,\int_{-\infin}^{\infin}e^{-x^2}dx&=\sqrt{\pi}\,.\end{aligned}

2. 几何做法(一)

无穷积分 ∫e^(-x^2)dx 的几种巧妙解法

S1={(x,y)x2+y2R2}S2={(x,y)0xR,0yR}S3={(x,y)x2+y22R2}\begin{aligned}S_1&=\{(x,y)\,|\,x^2+y^2\leq R^2\}\\S_2&=\{(x,y)\,|\,0\leq x \leq R,\,0\leq y \leq R\}\\S_3&=\{(x,y)\,|\,x^2+y^2\leq 2R^2\}\\\,\end{aligned} (0Rex2dx)2=0Rex2dx0Rey2dy=0R0Re(x2+y2)dxdy=S2e(x2+y2)dxdy\begin{aligned}\big(\int_{0}^{R}e^{-x^2}dx\big)^2&=\int_{0}^{R}e^{-x^2}dx\int_{0}^{R}e^{-y^2}dy\\&=\int_{0}^{R}\int_{0}^{R}e^{-(x^2+y^2)}dxdy\\&=\iint_{S_2}e^{-(x^2+y^2)}dxdy\end{aligned}

e(x2+y2)0S1e(x2+y2)dxdyS2e(x2+y2)dxdyS3e(x2+y2)dxdy\begin{aligned}&\because e^{-(x^2+y^2)}\geq 0 \\ &\therefore \iint_{S_1}e^{-(x^2+y^2)}dxdy\leq\iint_{S_2}e^{-(x^2+y^2)}dxdy\leq\iint_{S_3}e^{-(x^2+y^2)}dxdy\end{aligned}

  S1e(x2+y2)dxdy=0π/20Rer2rdrdθ=(0π/2dθ)(120Rer2dr2)=π4(1eR2)\begin{aligned}\iint_{S_1}e^{-(x^2+y^2)}dxdy&=\int_{0}^{\pi/2}\int_{0}^{R}e^{-r^2}rdrd\theta\\&=\big(\int_{0}^{\pi/2}d\theta\big)\big(\frac{1}{2}\int_{0}^{R}e^{-r^2}dr^2\big)\\&=\frac{\pi}{4}(1-e^{-R^2})\end{aligned}

同理S3e(x2+y2)dxdy=π4(1e2R2).  π4(1eR2)S2e(x2+y2)dxdyπ4(1e2R2).两边取极限R,(0Rex2dx)2=S2e(x2+y2)dxdy=π4.所以,0ex2dx=π2.\begin{aligned}\\&\textbf{同理}\,\iint_{S_3}e^{-(x^2+y^2)}dxdy=\frac{\pi}{4}(1-e^{-2R^2})\,.\\&\textbf{则}\,\, \frac{\pi}{4}(1-e^{-R^2})\leq\iint_{S_2}e^{-(x^2+y^2)}dxdy\leq\frac{\pi}{4}(1-e^{-2R^2})\,.\\&\textbf{两边取极限}\,R\to\infin,\,\textbf{则}\,\Big(\int_{0}^{R}e^{-x^2}dx\Big)^2=\iint_{S_2}e^{-(x^2+y^2)}dxdy=\frac{\pi}{4}.\\&\textbf{所以,}\int_{0}^{\infin}e^{-x^2}dx=\frac{\sqrt{\pi}}{2} \,.\end{aligned}

3. 几何做法(二)

无穷积分 ∫e^(-x^2)dx 的几种巧妙解法

考虑曲线z=ex2z轴旋转一周生成的旋转体的体积,由高数知识\begin{aligned}\textbf{考虑曲线}\, z=e^{-x^2}\, \textbf{绕}\, z\, \textbf{轴旋转一周生成的旋转体的体积,由高数知识}\end{aligned}
V=01πx2dz=π01(lnz)dz=π(zzlnz)01=π(1limz0+(zzlnz))=π\begin{aligned}V&= \int_0^{1}\pi x^2dz\\&=\pi \int_0^{1}(-\ln z)dz\\&=\pi (z-z\ln z)\,\Big|_0^1\\&=\pi (1-\lim_{z\to 0^{+}}(z-z\ln z))\\&=\pi\end{aligned}

无穷积分 ∫e^(-x^2)dx 的几种巧妙解法

旋转体在几何上的表示如图所示,旋转生成的曲面方程为z=e(x2+y2).旋转体的体积也可以理解为曲面z=e(x2+y2)xOy之间部分的体积,即\begin{aligned}&\textbf{旋转体在几何上的表示如图所示,旋转生成的曲面方程为} \,z=e^{-(x^2+y^2)}. \\ &\textbf{旋转体的体积也可以理解为曲面} \,z=e^{-(x^2+y^2)} \textbf{与}\,xOy\,\textbf{之间部分的体积,即}\end{aligned}
π=V=R2e(x2+y2)dxdy=ex2dxey2dy=(ex2dx)2\pi=V=\iint_{R^2}e^{-(x^2+y^2)}dxdy=\int_{-\infin}^{\infin}e^{-x^2}dx\int_{-\infin}^{\infin}e^{-y^2}dy=\big(\int_{-\infin}^{\infin}e^{-x^2}dx\big)^2ex2dx=π.\begin{aligned} \textbf{则} \int_{-\infin}^{\infin}e^{-x^2}dx=\sqrt{\pi}.\end{aligned}

4. 拉普拉斯变换

f(t)=0ex2tdx,对f(t)作拉普拉斯变换,令\begin{aligned}&\textbf{令}\,f(t)=\int_0^{\infin}e^{-x^2t}dx\textbf{,对}\,f(t)\,\textbf{作拉普拉斯变换,令}\end{aligned}
  F(s)=L[f(t)]=0L[ex2t]tdx=01s+x2dx=1s011+(xs)2d(xs)(let  u=xs)=1sarctanu0=π2s12\begin{aligned}F(s)=\mathscr{L}[f(t)]&=\int_0^{\infin}\mathscr{L}[e^{-x^2t}]_t\,dx\\&=\int_0^{\infin}\frac{1}{s+x^2}dx\\&=\frac{1}{\sqrt{s}}\int_{0}^{\infin}\frac{1}{1+(\displaystyle \frac{x}{\sqrt{s}})^2}d(\frac{x}{\sqrt{s}}) \quad (\textrm{let}\,\, u=\frac{x}{\sqrt{s}})\\&=\frac{1}{\sqrt{s}}\arctan u\,\Big|_0^{\infin}\\&=\frac{\pi}{2}s^{-\frac{1}{2}}\end{aligned}

F(s)作拉普拉斯反变换\textbf{对}\,F(s)\,\textbf{作拉普拉斯反变换}

  f(t)=L1[F(s)]=π2L1[1s12+1]=π21Γ(12+1)t12=π21Γ(12)t12\begin{aligned}f(t)=\mathscr{L}^{-1}[F(s)]&=\frac{\pi}{2}\mathscr{L}^{-1}[\frac{1}{s^{-\frac{1}{2}+1}}]\\&=\frac{\pi}{2}\frac{1}{\Gamma(-\frac{1}{2}+1)}t^{-\frac{1}{2}}\\&=\frac{\pi}{2}\frac{1}{\Gamma(\frac{1}{2})}t^{-\frac{1}{2}}\end{aligned}

由余元公式:Γ(s)Γ(1s)=πsinπs.s=12,则Γ(12)=πf(t)=π2t,0ex2dx=f(1)=π2.\begin{aligned}&\textbf{由余元公式:}\Gamma(s)\Gamma(1-s)=\frac{\pi}{\sin \pi s} .\\ &\textbf{令}\,s=\frac{1}{2}\textbf{,则}\,\Gamma(\frac{1}{2})=\sqrt{\pi},\\&\textbf{则}\, f(t)=\frac{\sqrt{\pi}}{2\sqrt{t}}\,,\,\int_0^{\infin}e^{-x^2}dx=f(1)=\frac{\sqrt{\pi}}{2}\,.\end{aligned}

5. 变量代换(一)

t=x2,dtdx=2x=2t,dx=dt2t.\begin{aligned}\textbf{令}\,t=x^2,\textbf{则}\,\frac{dt}{dx}=2x=2\sqrt{t} ,dx=\frac{dt}{2\sqrt{t}}\,.\end{aligned}
0ex2dx=0etdt2t=120ett121dt=12Γ(12) \int_{0}^{\infin}e^{-x^2}dx=\int_{0}^{\infin}e^{-t}\frac{dt}{2\sqrt{t}}=\frac{1}{2}\int_{0}^{\infin}e^{-t}t^{\frac{1}{2}-1}dt=\frac{1}{2}\,\Gamma(\frac{1}{2})
由上一种方法Γ(12)=π,则0ex2dx=π2.\begin{aligned}&\textbf{由上一种方法}\,\Gamma(\frac{1}{2})=\sqrt{\pi}\textbf{,则}\int_{0}^{\infin}e^{-x^2}dx=\frac{\sqrt{\pi}}{2}.\end{aligned}

6. 变量代换(二)

I=0ex2dx,x=ut,u>0为参数,则\begin{aligned}\textbf{记}\,I=\int_0^{\infin}e^{-x^2}dx,\,\textbf{令}\,x=ut,\,u>0\,\textbf{为参数,则}\end{aligned} I=u0eu2t2dteu2I=eu2u0eu2t2dt\begin{aligned}I&=u\int_0^{\infin}e^{-u^2t^2}dt\\e^{-u^2}I&=e^{-u^2}u\int_0^{\infin}e^{-u^2t^2}dt\end{aligned} 两边对变量u积分,I0eu2du=0(eu2u0eu2t2dt)du\begin{aligned}\textbf{两边对变量}\,u\,\textbf{积分,} I\int_0^{\infin}e^{-u^2}du&=\int_0^{\infin}\big(e^{-u^2}u\int_0^{\infin}e^{-u^2t^2}dt\big)du\\ \end{aligned}
右边交换积分次序,\begin{aligned}\textbf{右边交换积分次序,} \end{aligned}

I2=120(0e(1+t2)u2du)dt=12011+t2dt=12arctant0=π4\begin{aligned}I^2&=\frac{1}{2}\int_0^{\infin}\big(\int_0^{\infin}e^{-(1+t^2)u^2}du\big)dt\\&=\frac{1}{2}\int_0^{\infin}\frac{1}{1+t^2}dt \\&=\frac{1}{2}\arctan t\,\Big|_0^{\infin}\\&=\frac{\pi}{4}\end{aligned}

所以I=π2.\begin{aligned}\textbf{所以}\,I=\frac{\sqrt{\pi}}{2}\,.\end{aligned}

7. 构造含参变量函数

I=0ex2dx.f(x)=01ex(1+t2)1+t2dt,x0,则\begin{aligned}\textbf{记}\,I=\int_0^{\infin}e^{-x^2}dx\,. \,\textbf{令}\,f(x)=\int_0^{1}\frac{e^{-x(1+t^2)}}{1+t^2}dt,x\geq 0\textbf{,则}\end{aligned}
   f(0)=0111+t2dt=arctant01=π4f()=limx01ex(1+t2)1+t2dt=0\begin{aligned} &f(0)=\int_0^{1}\frac{1}{1+t^2}dt=\arctan t\,\Big|_0^1=\frac{\pi}{4} \\ &f(\infin)=\lim_{x\to\infin}\int_0^{1}\frac{e^{-x(1+t^2)}}{1+t^2}dt=0\end{aligned}

   f(x)=01ex(1+t2)dt=ex01ext2dt(let u=xt,dt=du/x)=exx0xeu2du\begin{aligned}f'(x)&=-\int_0^{1}e^{-x(1+t^2)}dt \\ &=-e^{-x}\int_0^{1}e^{-xt^2}dt \quad (\textrm{let }u=\sqrt{x}t,\,dt=du/\sqrt{x}\,) \\&=-\frac{e^{-x}}{\sqrt{x}}\int_0^{\sqrt{x}}e^{-u^2}du\end{aligned}

  g(x)=0xet2dt,f(x)=exxg(x),g(x)=ex2,g(0)=0,g()=I.\begin{aligned}&\textbf{记}\,\,g(x)=\int_0^{x}e^{-t^2}dt\,,\\&\textbf{则} \, f'(x)=-\frac{e^{-x}}{\sqrt{x}}g(\sqrt{x}),\,g'(x)=e^{-x^2},\,g(0)=0,\,g(\infin)=I.\end{aligned}

由牛顿-莱布尼兹公式,\begin{aligned}\textbf{由牛顿-莱布尼兹公式,}\end{aligned}

   f()f(0)=0f(x)dx=0exxg(x)dx(letu=x,du=dx2x)=20eu2g(u)du=20g(u)g(u)du=20g(u)d(g(u))=0d(g(u)2)=g(0)2g()2\begin{aligned}f(\infin)-f(0)&=\int_0^{\infin}f'(x)dx\\&=-\int_0^{\infin}\frac{e^{-x}}{\sqrt{x}}g(\sqrt{x})dx\quad (\textrm{let} \,u=\sqrt{x},\,du=\frac{dx}{2\sqrt{x}} )\\&=-2\int_0^{\infin}e^{-u^2}g(u)du\\&=-2\int_0^{\infin}g(u)g'(u)du\\&=-2\int_0^{\infin}g(u)d(g(u))\\&=-\int_0^{\infin}d\big(g(u)^2\big)\\&=g(0)^2-g(\infin)^2 \end{aligned}

所以,0π4=0I2,I=π2.\begin{aligned}\textbf{所以,} 0-\frac{\pi}{4}&=0-I^2,\,I=\frac{\sqrt{\pi}}{2}\,.\end{aligned}

8. Wallis 公式

Wallis 公式内容:\begin{aligned}\textbf{Wallis 公式内容:}\end{aligned}
limn(2n1)!!(2n)!!2n=2π\lim_{n\to\infin}\frac{(2n-1)!!}{(2n)!!}\sqrt{2n}=\sqrt{\frac{2}{\pi}} 推导过程参见:\textbf{推导过程参见:}Wallis公式_百度百科

  limn(1+x2n)nx2=elimn(1+x2n)n=ex2\begin{aligned}\because \,\lim_{n\to\infin} \Big(1+\frac{x^2}{n}\Big)^{\frac{n}{x^2}}&=e\\ \therefore \,\lim_{n\to\infin} \Big(1+\frac{x^2}{n}\Big)^{-n}&=e^{-x^2}\end{aligned}

0ex2dx=0limn(1+x2n)ndx=limn0(1+x2n)ndx\begin{aligned}\int_0^{\infin}e^{-x^2}dx=&\int_0^{\infin}\lim_{n\to\infin} \Big(1+\frac{x^2}{n}\Big)^{-n}dx =\lim_{n\to\infin} \int_0^{\infin}\Big(1+\frac{x^2}{n}\Big)^{-n}dx \end{aligned}

可以验证积分与极限次序是可交换的\begin{aligned}\\&\textbf{可以验证积分与极限次序是可交换的}\end{aligned}

tant=xn,则dtdx=1n(1+x2n)1,dx=n(1+x2n)dt.\begin{aligned}\textbf{令}\,\tan t=\frac{x}{\sqrt{n}} \textbf{,则}\,\frac{dt}{dx}=\frac{1}{\sqrt{n}}(1+\frac{x^2}{n})^{-1},\, dx=\sqrt{n}(1+\frac{x^2}{n})dt.\end{aligned}
原式=limn0π2n(1+x2n)n+1dt=limn0π2n(1+(tant)2)(n1)dt=limnn0π2(cost)2n2dt(0π2(cost)2ndt=(2n1)!!(2n)!!π2)=limnn(2n3)!!(2n2)!!π2=π2limn(n1)+1(2(n1)1)!!(2(n1))!!(let  n=n1)=π2limnn+12n(2n1)!!(2n)!!2n=π22limnn+1nlimn(2n1)!!(2n)!!2n=π2212π=π2\begin{aligned} \textbf{原式}&=\lim_{n\to\infin} \int_0^{\frac{\pi}{2}}\sqrt{n}(1+\frac{x^2}{n})^{-n+1}dt \\&=\lim_{n\to\infin} \int_0^{\frac{\pi}{2}}\sqrt{n}(1+(\tan t)^2)^{-(n-1)}dt\\&=\lim_{n\to\infin} \sqrt{n}\int_0^{\frac{\pi}{2}}(\cos t)^{2n-2}dt \quad \Big( \int_0^{\frac{\pi}{2}}(\cos t)^{2n}dt=\frac{(2n-1)!!}{(2n)!!}\frac{\pi}{2}\,\Big)\\&=\lim_{n\to\infin} \sqrt{n}\,\frac{(2n-3)!!}{(2n-2)!!}\frac{\pi}{2} \\&=\frac{\pi}{2}\lim_{n\to\infin} \sqrt{(n-1)+1}\,\frac{(2(n-1)-1)!!}{(2(n-1))!!} \quad (\textrm{let}\,\,n'=n-1)\\&=\frac{\pi}{2}\lim_{n'\to\infin} \frac{\sqrt{n'+1}}{\sqrt{2n'}}\,\frac{(2n'-1)!!}{(2n')!!}\sqrt{2n'}\\&=\frac{\pi}{2\sqrt{2}}\lim_{n'\to\infin} \frac{\sqrt{n'+1}}{\sqrt{n'}}\lim_{n'\to\infin} \frac{(2n'-1)!!}{(2n')!!}\sqrt{2n'}\\&=\frac{\pi}{2\sqrt{2}}\cdot1\cdot\sqrt{\frac{2}{\pi}}\\&=\frac{\sqrt{\pi}}{2}\end{aligned}

所以0ex2dx=π2.\begin{aligned}\textbf{所以}\,\int_0^{\infin}e^{-x^2}dx=\frac{\sqrt{\pi}}{2}\end{aligned}.



如读者还有其他巧妙解法,请不吝赐教!\begin{aligned}\small \textbf{如读者还有其他巧妙解法,请不吝赐教!}\end{aligned}