最小生成树Prim算法朴素版 C语言实现
文章作者:Slyar 文章来源:Slyar Home (www.slyar.com) 转载请注明,谢谢合作。
前几天研究Kruskal算法,直接上手就是并查集优化,朴素算法压根就没写。这两天看Prim算法也想略过朴素版O(n^2)直接用二叉堆优化,可是发现不看朴素算法根本写不出来...囧,看来还是不能忽略基础...
草稿纸上画图模拟推演了半天,终于搞清楚Prim算法朴素版的C语言实现,拿出那天学Kruskal的小题目测试了一下,通过。
代码的注释我写得很详细,方便理解,有几点需要说明一下。
1、2个for循环都是从2开始的,因为一般我们默认开始就把第一个节点加入生成树,因此之后不需要再次寻找它。
2、lowcost[i]记录的是以节点i为终点的最小边权值。初始化时因为默认把第一个节点加入生成树,因此lowcost[i] = graph[1][i],即最小边权值就是各节点到1号节点的边权值。
3、mst[i]记录的是lowcost[i]对应的起点,这样有起点,有终点,即可唯一确定一条边了。初始化时mst[i] = 1,即每条边都是从1号节点出发。
编写程序:对于如下一个带权无向图,给出节点个数以及所有边权值,用Prim算法求最小生成树。
输入数据:
7 11
A B 7
A D 5
B C 8
B D 9
B E 7
C E 5
D E 15
D F 6
E F 8
E G 9
F G 11
输出:
A - D : 5
D - F : 6
A - B : 7
B - E : 7
E - C : 5
E - G : 9
Total:39
最小生成树Prim算法朴素版 C语言实现 代码如下
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
#include <stdio.h> #include <stdlib.h> #define MAX 100 #define MAXCOST 0x7fffffff int graph[MAX][MAX]; int Prim(int graph[][MAX], int n) { /* lowcost[i]记录以i为终点的边的最小权值,当lowcost[i]=0时表示终点i加入生成树 */ int lowcost[MAX]; /* mst[i]记录对应lowcost[i]的起点,当mst[i]=0时表示起点i加入生成树 */ int mst[MAX]; int i, j, min, minid, sum = 0; /* 默认选择1号节点加入生成树,从2号节点开始初始化 */ for (i = 2; i <= n; i++) { /* 最短距离初始化为其他节点到1号节点的距离 */ lowcost[i] = graph[1][i]; /* 标记所有节点的起点皆为默认的1号节点 */ mst[i] = 1; } /* 标记1号节点加入生成树 */ mst[1] = 0; /* n个节点至少需要n-1条边构成最小生成树 */ for (i = 2; i <= n; i++) { min = MAXCOST; minid = 0; /* 找满足条件的最小权值边的节点minid */ for (j = 2; j <= n; j++) { /* 边权值较小且不在生成树中 */ if (lowcost[j] < min && lowcost[j] != 0) { min = lowcost[j]; minid = j; } } /* 输出生成树边的信息:起点,终点,权值 */ printf("%c - %c : %d/n", mst[minid] + 'A' - 1, minid + 'A' - 1, min); /* 累加权值 */ sum += min; /* 标记节点minid加入生成树 */ lowcost[minid] = 0; /* 更新当前节点minid到其他节点的权值 */ for (j = 2; j <= n; j++) { /* 发现更小的权值 */ if (graph[minid][j] < lowcost[j]) { /* 更新权值信息 */ lowcost[j] = graph[minid][j]; /* 更新最小权值边的起点 */ mst[j] = minid; } } } /* 返回最小权值和 */ return sum; } int main() { int i, j, k, m, n; int x, y, cost; char chx, chy; /* 读取节点和边的数目 */ scanf("%d%d", &m, &n); getchar(); /* 初始化图,所有节点间距离为无穷大 */ for (i = 1; i <= m; i++) { for (j = 1; j <= m; j++) { graph[i][j] = MAXCOST; } } /* 读取边信息 */ for (k = 0; k < n; k++) { scanf("%c %c %d", &chx, &chy, &cost); getchar(); i = chx - 'A' + 1; j = chy - 'A' + 1; graph[i][j] = cost; graph[j][i] = cost; } /* 求解最小生成树 */ cost = Prim(graph, m); /* 输出最小权值和 */ printf("Total:%d/n", cost); //system("pause"); return 0; } |