Master-Worker模式
Master-Worker模式是常用的并行计算模式。它的核心思想是系统由李郎类进程协作工作:Master进程和Worker进程。Master负责接收和分配任务,Worker负责处理子任务。当各个Worker子进程处理完成后,会将结果返回给Master,由Master做归纳和总结。其好处是能将一个大任务分解成若干个小任务,并行执行,从而提高系统的吞吐量。
Master:
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
public class Master {
//1 应该有一个承装任务的集合
private ConcurrentLinkedQueue<Task> workQueue = new ConcurrentLinkedQueue<Task>();
//2 使用HashMap去承装worker对象
private HashMap<String,Thread> workers = new HashMap<String,Thread>();
//3 使用一个容器承装每一个worker并发执行任务的结果集,因为worker返回来结果集会是并发的,所有用这个map
private ConcurrentHashMap<String,Object> resultMap = new ConcurrentHashMap<String,Object>();
//4 构造方法
public Master(Worker worker,int workerCount){
//在worker中设置好对Master中workQueue,workers的引用
//每一个worker对象都需要Master的引用。workQueue用于任务的领取,resultMap用于任务的提交
worker.setWorkerQueue(this.workQueue);
worker.setResultMap(this.resultMap);
for(int i = 0;i < workerCount; i++ ){
//key表示每一个worker的名字,value表示线程执行对象
workers.put("子节点"+ Integer.toString(i),new Thread(worker));
}
}
//5 提交方法(将任务放入到Master的workQueue里去)
public void submit(Task task){
this.workQueue.add(task);
}
//6 需要有一个执行的方法(启动引用程序,让所有的worker工作)
public void execute(){
for(Map.Entry<String, Thread> me : workers.entrySet()){
me.getValue().start();
}
}
//8 判断线程是否执行完毕
public boolean isComplete(){
for(Map.Entry<String, Thread> me : workers.entrySet()){
if(me.getValue().getState() != Thread.State.TERMINATED){
return false;
}
}
return true;
}
//9 返回结果集
public int getReulst(){
int ret = 0;
for(Map.Entry<String, Object> me: resultMap.entrySet()){
//汇总的逻辑(不定,可加,可其他操作,根据业务需求)
ret += (Integer)me.getValue();
}
return ret;
}
}
Worker:
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
public class Worker implements Runnable{
private ConcurrentLinkedQueue<Task> workQueue;
private ConcurrentHashMap<String, Object> resultMap;
public void setWorkerQueue(ConcurrentLinkedQueue<Task> workQueue) {
this.workQueue = workQueue;
}
public void setResultMap(ConcurrentHashMap<String, Object> resultMap) {
this.resultMap = resultMap;
}
@Override
public void run() {
while(true){
Task input = this.workQueue.poll();
if(input == null) break;
//真正的去做业务处理
Object output = handle(input);
this.resultMap.put(Integer.toString(input.getId()), output);
}
}
private Object handle(Task input) {
Object output = null;
try {
//表示处理task任务的耗时,可能是数据的加工,也可能是操作数据库的...
Thread.sleep(500);
output = input.getPrice();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return output;
}
}
Task:
public class Task {
private int id;
private String name;
private int price;
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getPrice() {
return price;
}
public void setPrice(int price) {
this.price = price;
}
}
主类:
import java.util.Random;
public class Main {
public static void main(String[] args) {
Master master = new Master(new Worker(), 10);
Random r = new Random();
for(int i = 1;i<=100;i++){
Task t = new Task();
t.setId(i);
t.setName("任务" + i);
t.setPrice(r.nextInt(1000));
master.submit(t);
}
master.execute();
long start = System.currentTimeMillis();
while(true){
if(master.isComplete()){
long end = System.currentTimeMillis() - start;
int ret = master.getReulst();
System.out.println("执行结果:" + ret + ",耗时:" + end);
break;
}
}
}
}
输出:
执行结果:51783,耗时:5020
其实还有疑问,100个任务,10个Worker,是如何做到负载均衡的,就是怎么实现给10个Worker每个分配10个任务的…