无人驾驶四 扩展卡尔曼滤波在目标车辆运动状态识别中的运用(python程序)
https://blog.****.net/adamshan/article/details/78265754
# coding=utf-8
import numpy as np
import numdifftools as nd
import math
dataset = []
# read the measurement data, use 0.0 to stand LIDAR data
# and 1.0 stand RADAR data:
with open('c:/temp/data_synthetic.txt', 'r') as f:#'r'可以读str,'rb'-byte
lines = f.readlines()
for line in lines:
line = line.strip('\n')
line = line.strip()
numbers = line.split()
result = []
for i, item in enumerate(numbers):
item.strip()
if i == 0:
if item == 'L':
result.append(0.0)
else:
result.append(1.0)
else:
result.append(float(item))
dataset.append(result)
f.close()
P = np.diag([1.0, 1.0, 1.0, 1.0, 1.0])
print(P, P.shape)
H_lidar = np.array([[ 1., 0., 0., 0., 0.],
[ 0., 1., 0., 0., 0.]])
print(H_lidar, H_lidar.shape)
R_lidar = np.array([[0.0225, 0.],[0., 0.0225]])
R_radar = np.array([[0.09, 0., 0.],[0., 0.0009, 0.], [0., 0., 0.09]])
print(R_lidar, R_lidar.shape)
print(R_radar, R_radar.shape)
# process noise standard deviation for a
std_noise_a = 2.0
# process noise standard deviation for yaw acceleration
std_noise_yaw_dd = 0.3
#控制所有的角度的格式为-pi~pi:
def control_psi(psi):
while (psi > np.pi or psi < -np.pi):
if psi > np.pi:
psi = psi - 2 * np.pi
if psi < -np.pi:
psi = psi + 2 * np.pi
return psi
###系统状态初始化,目标的x、y、v、sita偏航角、w偏航角速度:
state = np.zeros(5)
init_measurement = dataset[0]
current_time = 0.0
if init_measurement[0] == 0.0:
print('Initialize with LIDAR measurement!')
current_time = init_measurement[3]
state[0] = init_measurement[1]
state[1] = init_measurement[2]
else:
print('Initialize with RADAR measurement!')
current_time = init_measurement[4]
init_rho = init_measurement[1]
init_psi = init_measurement[2]
init_psi = control_psi(init_psi)
state[0] = init_rho * np.cos(init_psi)
state[1] = init_rho * np.sin(init_psi)
print(state, state.shape)
# Preallocation for Saving:
px = []
py = []
vx = []
vy = []
gpx = []
gpy = []
gvx = []
gvy = []
mx = []
my = []
def savestates(ss, gx, gy, gv1, gv2, m1, m2):
px.append(ss[0])
py.append(ss[1])
vx.append(np.cos(ss[3]) * ss[2])
vy.append(np.sin(ss[3]) * ss[2])
gpx.append(gx)
gpy.append(gy)
gvx.append(gv1)
gvy.append(gv2)
mx.append(m1)
my.append(m2)
###定义状态转移函数和测量函数,利用numdifftools求雅克比矩阵:
measurement_step = len(dataset)
state = state.reshape([5, 1])
dt = 0.05#当实际运行EKF时会计算出前后两次测量的时间差,一次来替换这里的dt
I = np.eye(5)
#定义状态转移函数:
transition_function = lambda y: np.vstack((
y[0] + (y[2] / y[4]) * (np.sin(y[3] + y[4] * dt) - np.sin(y[3])),
y[1] + (y[2] / y[4]) * (-np.cos(y[3] + y[4] * dt) + np.cos(y[3])),
y[2],
y[3] + y[4] * dt,
y[4]))
# when omega is 0
transition_function_1 = lambda m: np.vstack((m[0] + m[2] * np.cos(m[3]) * dt,
m[1] + m[2] * np.sin(m[3]) * dt,
m[2],
m[3] + m[4] * dt,
m[4]))
#定义状态转移函数的雅克比矩阵(函数,输入参数为上一步state list):
J_A = nd.Jacobian(transition_function)
J_A_1 = nd.Jacobian(transition_function_1)
#print(J_A([1., 2., 3., 4., 5.]))
#定义测量函数:
measurement_function = lambda k: np.vstack((np.sqrt(k[0] * k[0] + k[1] * k[1]),
math.atan2(k[1], k[0]),
(k[0] * k[2] * np.cos(k[3]) + k[1] * k[2] * np.sin(k[3])) / np.sqrt(k[0] * k[0] + k[1] * k[1])))
#定义测量函数的雅克比矩阵(函数,输入参数为当前步state list):
J_H = nd.Jacobian(measurement_function)
#print(J_H([1., 2., 3., 4., 5.]))
###############################################
for step in range(1, measurement_step):
# Prediction
# ========================
t_measurement = dataset[step]
if t_measurement[0] == 0.0:
m_x = t_measurement[1]
m_y = t_measurement[2]
z = np.array([[m_x], [m_y]])
dt = (t_measurement[3] - current_time) / 1000000.0
current_time = t_measurement[3]
# true position
g_x = t_measurement[4]
g_y = t_measurement[5]
g_v_x = t_measurement[6]
g_v_y = t_measurement[7]
else:
m_rho = t_measurement[1]
m_psi = t_measurement[2]
m_dot_rho = t_measurement[3]
z = np.array([[m_rho], [m_psi], [m_dot_rho]])
dt = (t_measurement[4] - current_time) / 1000000.0
current_time = t_measurement[4]
# true position
g_x = t_measurement[5]
g_y = t_measurement[6]
g_v_x = t_measurement[7]
g_v_y = t_measurement[8]
if np.abs(state[4, 0]) < 0.0001: # omega is 0, Driving straight
state = transition_function_1(state.ravel().tolist())
state[3, 0] = control_psi(state[3, 0])
JA = J_A_1(state.ravel().tolist())
else: # otherwise
state = transition_function(state.ravel().tolist())
state[3, 0] = control_psi(state[3, 0])
JA = J_A(state.ravel().tolist())
G = np.zeros([5, 2])
G[0, 0] = 0.5 * dt * dt * np.cos(state[3, 0])
G[1, 0] = 0.5 * dt * dt * np.sin(state[3, 0])
G[2, 0] = dt
G[3, 1] = 0.5 * dt * dt
G[4, 1] = dt
Q_v = np.diag([std_noise_a*std_noise_a, std_noise_yaw_dd*std_noise_yaw_dd])
Q = np.dot(np.dot(G, Q_v), G.T)
# Project the error covariance ahead
P = np.dot(np.dot(JA, P), JA.T) + Q
# Measurement Update (Correction)
# ===============================
if t_measurement[0] == 0.0:
# Lidar
S = np.dot(np.dot(H_lidar, P), H_lidar.T) + R_lidar
K = np.dot(np.dot(P, H_lidar.T), np.linalg.inv(S))
y = z - np.dot(H_lidar, state)
y[1, 0] = control_psi(y[1, 0])
state = state + np.dot(K, y)
state[3, 0] = control_psi(state[3, 0])
# Update the error covariance
P = np.dot((I - np.dot(K, H_lidar)), P)
# Save states for Plotting
savestates(state.ravel().tolist(), g_x, g_y, g_v_x, g_v_y, m_x, m_y)
else:
# Radar
JH = J_H(state.ravel().tolist())
S = np.dot(np.dot(JH, P), JH.T) + R_radar
K = np.dot(np.dot(P, JH.T), np.linalg.inv(S))
map_pred = measurement_function(state.ravel().tolist())
if np.abs(map_pred[0, 0]) < 0.0001:
# if rho is 0
map_pred[2, 0] = 0
y = z - map_pred
y[1, 0] = control_psi(y[1, 0])
state = state + np.dot(K, y)
state[3, 0] = control_psi(state[3, 0])
# Update the error covariance
P = np.dot((I - np.dot(K, JH)), P)
savestates(state.ravel().tolist(), g_x, g_y, g_v_x, g_v_y, m_rho * np.cos(m_psi), m_rho * np.sin(m_psi))
def rmse(estimates, actual):
result = np.sqrt(np.mean((estimates-actual)**2))
return result
print(rmse(np.array(px), np.array(gpx)),
rmse(np.array(py), np.array(gpy)),
rmse(np.array(vx), np.array(gvx)),
rmse(np.array(vy), np.array(gvy)))
# write to the output file
stack = [px, py, vx, vy, mx, my, gpx, gpy, gvx, gvy]
stack = np.array(stack)
stack = stack.T
np.savetxt('c:/temp/output.csv', stack, '%.6f')
注意:用numdifftools包求雅克比矩阵
pip install Numdifftools
下面在jupyter notebook中用脚本编程绘图,绘图使用了plotly包:
pip install plotly
pip install jupyter ipython
jupyter notebook # 执行后会自动打开浏览器(注意用chrome)
import plotly.offline as py
from plotly.graph_objs import *
import pandas as pd
py.init_notebook_mode()
my_cols = ['px_est', 'py_est', 'vx_est', 'vy_est', 'px_meas', 'py_meas', 'px_gt', 'py_gt', 'vx_gt', 'vy_gt']
with open('c:/temp/output.csv') as f:
table_ekf_output = pd.read_table(f, sep=' ', header=None, names=my_cols, lineterminator='\n')
# table_ekf_output
# Measurements
trace2 = Scatter(
x=table_ekf_output['px_meas'],
y=table_ekf_output['py_meas'],
xaxis='x2',
yaxis='y2',
name='Measurements',
mode = 'markers'
)
# estimations
trace1 = Scatter(
x=table_ekf_output['px_est'],
y=table_ekf_output['py_est'],
xaxis='x2',
yaxis='y2',
name='KF- Estimate',
mode='markers'
)
# Ground Truth
trace3 = Scatter(
x=table_ekf_output['px_gt'],
y=table_ekf_output['py_gt'],
xaxis='x2',
yaxis='y2',
name='Ground Truth',
mode='markers'
)
data = [trace1, trace2, trace3]
layout = Layout(
xaxis2=dict(
anchor='x2',
title='px'
),
yaxis2=dict(
anchor='y2',
title='py'
)
)
fig = Figure(data=data, layout=layout)
py.iplot(fig, filename='EKF')