opencv 特征描述子匹配,暴力匹配,交叉匹配,KNN 匹配,随机一致性匹配(RANSAC)
本章内容:
1. 暴力匹配
2. 匹配对分析
3. 交叉匹配
4. KNN 匹配
5. 随机一致性匹配(RANSAC)
1. 暴力匹配
输出结果
2. 匹配点分析
输出结果:
3. 交叉匹配
输出结果
4.KNN匹配
输出结果
5. 随机一致性匹配(RANSAC)
输出结果:
代码
#include <ostream>
#include <opencv.hpp>
#include<opencv2/opencv.hpp>
#include "opencv2/xfeatures2d.hpp"int main(int argc, char *argv[])
{
/*
本章内容:
1. 暴力匹配
2. 匹配对分析
3. 交叉匹配
4. KNN 匹配
5. 随机一致性匹配(RANSAC)
*/
cv::String fileName = "/home/wang/dev/Image/3-left.JPG";
cv::String fileName1 = "/home/wang/dev/Image/3-right.JPG";
cv::Mat src = cv::imread(fileName,cv::IMREAD_REDUCED_COLOR_2);
cv::Mat src1 = cv::imread(fileName1,cv::IMREAD_REDUCED_COLOR_2);
if(src.data == NULL){
printf("图像读入失败\n");
return -1;
}
cv::imshow("src",src);
cv::imshow("src1",src1);
// 特征描述符计算
cv::Ptr<cv::xfeatures2d::SURF> surf = cv::xfeatures2d::SURF::create();
std::vector<cv::KeyPoint> kp1;
std::vector<cv::KeyPoint> kp2;
cv::Mat des1;
cv::Mat des2;
surf->detectAndCompute(src,cv::Mat(),kp1,des1);
surf->detectAndCompute(src1,cv::Mat(),kp2,des2);
/*1.暴力匹配
* 构造: CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false );
*/
cv::BFMatcher matcher(cv::NORM_L2);
std::vector<cv::DMatch> Dmatch;
matcher.match(des1,des2,Dmatch);cv::Mat dstMatch1;
cv::drawMatches(src,kp1,src1,kp2,Dmatch,dstMatch1);
cv::imshow("BFMatch", dstMatch1);/*2.cv::DMatch分析
* 属性
CV_PROP_RW int queryIdx; //!< query descriptor index
CV_PROP_RW int trainIdx; //!< train descriptor index
CV_PROP_RW int imgIdx; //!< train image index
CV_PROP_RW float distance;
*/
std::cout << "查询关键点数: " << kp1.size() << std::endl;
std::cout << "训练关键点数: " << kp2.size() << std::endl;
std::cout << "queryIdx: " << Dmatch[10].queryIdx << std::endl;
std::cout << "trainIdx: " << Dmatch[10].trainIdx << std::endl;
std::cout << "imgIdx: " << Dmatch[10].imgIdx << std::endl;
std::cout << "distance: " << Dmatch[10].distance << std::endl;// 3.交叉匹配
cv::BFMatcher matcher1(cv::NORM_L2, true);
std::vector<cv::DMatch> Dmatch1;
matcher1.match(des1,des2,Dmatch1);
cv::Mat dstMatch2;
cv::drawMatches(src,kp1,src1,kp2,Dmatch1,dstMatch2);
cv::imshow("交叉匹配",dstMatch2);std::cout << "交叉匹配点数目: " << Dmatch1.size() << std::endl;
/*KNN匹配
api接口: CV_WRAP void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors,
CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
InputArray mask=noArray(), bool compactResult=false ) const;
参数分析:
@param matches Matches. Each matches[i] is k or less matches for the same query descriptor.
*/
cv::BFMatcher matcher2(cv::NORM_L2);
std::vector<std::vector<cv::DMatch>> Dmatch2;
matcher2.knnMatch(des1,des2,Dmatch2,2);
std::vector<cv::DMatch> goodMatchs;
std::cout << "KNN总数目:" << Dmatch2.size() << std::endl;
for(int i = 0; i < Dmatch2.size(); i++){
if(Dmatch2[i][0].distance < 0.69 * Dmatch2[i][1].distance){
goodMatchs.push_back(Dmatch2[i][0]);
}
}
std::cout << "KNN总数目交叉匹配数目:" << goodMatchs.size() << std::endl;cv::Mat dstKNN2;
cv::drawMatches(src,kp1,src1,kp2,goodMatchs,dstKNN2);
cv::imshow("基于KNN的交叉匹配",dstKNN2);cv::waitKey(0);
return 1;
}