Boxplot
In [123]: import numpy as np
import matplotlib.pyplot as plt
In [124]: data = np.random.randn(100)
In [125]: plt.boxplot(data) #The red bar is the median of the distribution.
plt.show()
In [126]: import numpy as np
import matplotlib.pyplot as plt
In [127]: data = np.random.randn(100,5)
In [128]: plt.boxplot(data)
plt.show()
5 Using custom colors for boxplots
In [38]: import numpy as np
import matplotlib.pyplot as plt
In [47]: values = np.random.randn(100)
b = plt.boxplot(values) #Plotting functions returns a dictionary
#The key of the dictionary is the name of the graphical elements.
#such elements will be medians, fliers, whiskers, boxes, and caps.
#we iterate every graphic primitive that is a part of the boxplot and set its color to black.
for name, line_list in b.items(): #b={name:key}
for line in line_list:
line.set_color('k') #Making a boxplot appear totally black
plt.show()
Facet Grids分面网格 and Categorical Data类型数据
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
tips = pd.read_csv('../examples/tips.csv')
tips.head()
tips['tip_pct'] = tips['tip'] / (tips['total_bill'] - tips['tip'])
tips.head()
#categorical data
sns.factorplot(x='day', y='tip_pct', hue='time', col='smoker', kind='bar', data=tips[tips.tip_pct <1])
plt.show()
#categorical data
sns.factorplot(x='day', y='tip_pct', row='time', col='smoker', kind='bar', data=tips[tips.tip_pct <1])
plt.show()
sns.factorplot(x='tip_pct', y='day', kind='box', data=tips[tips.tip_pct<0.5])
plt.show()