Region Normalization for Image Inpainting

1. Motivation

  • batch normalization将缺失区域和有效区域同样处理,会导致均值和标准差的偏移。

2. Approach

2.1 Region normalization

Region Normalization for Image Inpainting

将第n个特征图的第c个通道分为多个区域,

Region Normalization for Image Inpainting

Region Normalization for Image Inpainting

计算每个小区域的均值和标准差,

Region Normalization for Image Inpainting

Region Normalization for Image Inpainting

将每个小区域normalization,在组合即可。

  • Basic Region Normalization

Region Normalization for Image Inpainting

  • Learnable Region Normalization

Region Normalization for Image Inpainting

2.2 Network structure and loss functions

Region Normalization for Image Inpainting

整个网络采用了编码解码的结构,在编码结构中插入Basic Region Normalization,在中间和解码部分插入了Learnable Region Normalization。

损失函数包括reconstruction loss, adversarial loss, perceptual loss and style loss

3. Discussion

这篇论文的创新点很明确,就是解决缺失区域和已知区域同时进行normalization均值和标准差不一致的问题,针对性的提出了region normalization解决该问题。

4. References

【1】Yu, Tao, et al. "Region Normalization for Image Inpainting." AAAI. 2020.