无监督且尺度一致的深度估计与视觉SLAM
看了 https://www.bilibili.com/video/av77782083?t=2318 以后记录了一下
1. 单目无监督深度估计原理
1. Stereo Pair
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue
优点:有绝对尺度
缺点:occlusion issue(左图中的image在右图中没有出现)(双目匹配中的问题)
2. Monocular Video
Unsupervised Learning of Depth and Ego-Motion from Video
缺点:没有绝对尺度(scale ambiguity,尺度奇异)
occlusion issue
动态物体问题
尺度不一致性(不同序列训练出的深度尺度不同)
- Stereo Video
Unsupervised Learning of Monocular Depth Estimation and Visual Odometry with Deep Feature Reconstruction
优点:
有绝对尺度
可以做VO
问题:
occlusion issue
动态物体问题
2. 输出尺度不一致问题
现象与影响:
Predict depth and pose with varying scales on a sequence
Depth cannot be fused together for mapping
Poses cannot concatenated for camera localization
造成问题的原因:
Scale ambiguity
Photometric loss is scale-invariant
Training samples are independently processed
3. 作者的方案
Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video
Geometry Consistency Loss (for scale consistency)
Self Discovered Mask (for handling occlusion and dynamics)
Relative depth error:
Geometry Consistency Loss:
Self Discovered Mask:
问题:
Depth 估计存在问题:
Although consistent, but the scale is still unknown
Visual Odometry 存在问题:
Lack of muti-view optimization
Heavy drifts in long videos