机器学习中的归一化方法(Deep learning Normalization Method)

机器学习、数据挖掘工作中,数据前期准备、数据预处理过程、特征提取等几个步骤几乎要花费数据工程师一半的工作时间。同时,数据预处理的效果也直接影响了后续模型能否有效的工作。然而,目前的大部分学术研究主要集中在模型的构建、优化等方面,对数据预处理的理论研究甚少,可以说,很多数据预处理工作仍然是靠工程师的经验进行的。

在这里主要讨论两种归一化方法:

1、线性函数归一化(Min-Max scaling)

线性函数将原始数据线性化的方法转换到[0 1]的范围,归一化公式如下:

机器学习中的归一化方法(Deep learning Normalization Method)
该方法实现对原始数据的等比例缩放,其中Xnorm为归一化后的数据,X为原始数据,Xmax、Xmin分别为原始数据集的最大值和最小值。

2、0均值标准化(Z-score standardization)

0均值归一化方法将原始数据集归一化为均值为0、方差1的数据集,归一化公式如下:
机器学习中的归一化方法(Deep learning Normalization Method)
其中,μ、σ分别为原始数据集的均值和方法。该种归一化方式要求原始数据的分布可以近似为高斯分布,否则归一化的效果会变得很糟糕。

以上为两种比较普通但是常用的归一化技术,那这两种归一化的应用场景是怎么样的呢?什么时候第一种方法比较好、什么时候第二种方法比较好呢?下面做一个简要的分析概括:
1、在分类、聚类算法中,需要使用距离来度量相似性的时候、或者使用PCA技术进行降维的时候,第二种方法(Z-score standardization)表现更好。
2、在不涉及距离度量、协方差计算、数据不符合正太分布的时候,可以使用第一种方法或其他归一化方法。比如图像处理中,将RGB图像转换为灰度图像后将其值限定在[0 255]的范围。

为什么在距离度量计算相似性、PCA中使用第二种方法(Z-score standardization)会更好呢?我们进行了以下的推导分析:

归一化方法对方差、协方差的影响:假设数据为2个维度(X、Y),首先看0均值对方差、协方差的影响:
先使用第二种方法进行计算,我们先不做方差归一化,只做0均值化,变换后数据为
机器学习中的归一化方法(Deep learning Normalization Method)
机器学习中的归一化方法(Deep learning Normalization Method)
新数据的协方差为
机器学习中的归一化方法(Deep learning Normalization Method)
由于 
机器学习中的归一化方法(Deep learning Normalization Method)
因此
机器学习中的归一化方法(Deep learning Normalization Method)
而原始数据协方差为
机器学习中的归一化方法(Deep learning Normalization Method)
因此 
机器学习中的归一化方法(Deep learning Normalization Method)
做方差归一化后:

机器学习中的归一化方法(Deep learning Normalization Method)
方差归一化后的协方差为:
机器学习中的归一化方法(Deep learning Normalization Method)
使用第一种方法进行计算,为方便分析,我们只对X维进行线性函数变换
机器学习中的归一化方法(Deep learning Normalization Method)
计算协方差
机器学习中的归一化方法(Deep learning Normalization Method)

可以看到,使用第一种方法(线性变换后),其协方差产生了倍数值的缩放,因此这种方式无法消除量纲对方差、协方差的影响,对PCA分析影响巨大;同时,由于量纲的存在,使用不同的量纲、距离的计算结果会不同。
而在第二种归一化方式中,新的数据由于对方差进行了归一化,这时候每个维度的量纲其实已经等价了,每个维度都服从均值为0、方差1的正态分布,在计算距离的时候,每个维度都是去量纲化的,避免了不同量纲的选取对距离计算产生的巨大影响。

总结来说,在算法、后续计算中涉及距离度量(聚类分析)或者协方差分析(PCA、LDA等)的,同时数据分布可以近似为状态分布,应当使用0均值的归一化方法。其他应用中更具需要选用合适的归一化方法。