神经网络训练集的数量最少可以是多少个?

(mnist 0 ,2)---81*30*2---(1,0)(0,1)

用81*30*2的网络分类mnist的0和2。让训练集的数量n分别等于5000,4500,4000,3500,3000,2500,2000,1500,1000,500,400,300,200,100,50,40,30,20,10,5,4,3,2,共22个值。看看训练集的大小对分类结果到底有什么影响。

 

让收敛标准δ等于0.5到1e-5的25个值,每个值收敛199次,取平均值。因此共收敛了25*199*22次,首先比较迭代次数

 

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

400

300

200

100

50

40

30

20

10

5

4

3

2

δ

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

0.5

8.8140704

9.1909548

8.8190955

8.4572864

10.462312

8.7035176

9.5175879

8.6582915

7.6582915

7.8743719

8.2562814

8.5678392

8.3919598

8.6633166

9.9145729

9.6432161

8.9949749

8.8994975

8.7135678

7.8643216

8.9346734

8.1155779

9.5778894

0.4

212.50251

211.55779

212.45226

212.45729

211.60804

211.91457

210.79899

210.69347

211.86935

211.48744

211.85427

211.43719

212.01508

210.1809

224.24121

233.84422

211.24121

189.16583

165.1809

147.88442

117.20101

91.221106

119.82412

0.3

267.47739

267.42714

268.35176

268.56784

267.55779

269.72362

266.93467

268.24121

268.46231

267.29146

268.93467

269.24623

269.44724

281.8794

295.1005

298.44724

268.88945

242.32161

211.32161

188.78894

153.60302

121.27136

156.47236

0.2

326.42714

326.14573

327.85427

327.41709

325.33166

325.94472

324.11558

324.00503

324.77387

326.1206

326.42211

323.15578

328.9196

321.23116

349.75879

343.45226

320.94975

290.57286

257.50251

230.33668

190.32161

151.46734

194.96482

0.1

412.12563

411.66834

412.71859

410.34673

410.65327

410.30653

411.80402

410.62814

412.46734

408.71859

409.21608

411.61307

407.94975

394.58291

419

418.37186

393.68844

358.02513

320.76884

296.84925

254.45226

208.36181

261.35176

0.01

687.25126

687.90452

688.32161

687.19095

687.64824

688.83417

688.84422

688.79899

687.38693

690.05528

687.34673

746.40704

658.22111

718.0402

776.55276

789.8794

801.15075

677.35678

668.50754

833.62312

841.84925

750.77387

895.1407

0.001

1432.1206

1434.809

1441.7588

1434.9146

1442.1206

1436.9548

1434.4925

1436.6633

1439.6432

1381.8291

1351.3769

1382.3518

1439.1457

1734.9648

1956.9548

1823

2014.5628

1685.5377

1984.206

4369.7337

5041.6734

4713.5025

5422.1608

9.00E-04

1456.1608

1460.7035

1451.5025

1447.8794

1450.7638

1451.6382

1455.809

1444.603

1446.0503

1433.6281

1400.4221

1446.2764

1478.4422

1850.0201

2017.0603

1923.8794

2103.8693

1782.3216

2089.8543

4776.5578

5523.2915

5151.5779

5912.6583

8.00E-04

1476.2613

1492.6734

1478.2111

1486.1206

1486.3518

1477.9899

1484.794

1490.6734

1486.2714

1503.6583

1462.2111

1503.4372

1508.5628

1926.8543

2131.3467

2013.9397

2179.4322

1878.5628

2247.1206

5199.6935

6138.7889

5759.2764

6572.0251

7.00E-04

1562.4925

1578.1809

1524.7538

1562.9548

1556.1608

1526.4623

1569.2261

1572.1508

1570.8241

1552.3719

1535.598

1539.4573

1623.6683

2041.7839

2241.4874

2113.6131

2288.2261

2009.7437

2436.6281

5852.8593

6856.0302

6487.9548

7382.8392

6.00E-04

1739.8291

1716.8945

1745.4774

1733.9598

1718.3116

1754.9849

1721.1156

1699.397

1714.6734

1623.407

1632.6834

1626.1709

1741.9899

2227.2714

2385.3819

2282.7186

2426.2462

2200.0302

2700.0251

6668.9397

7915.3166

7379.3266

8446.5829

5.00E-04

1973.005

1991.0854

1968.3417

1962

1989.9196

1976.9749

1995.7688

1994.6131

2007.6884

1738.794

1787.8191

1736.4925

1850.9849

2408.9146

2565.0653

2418.397

2598.3417

2403.1859

3030.9598

7778.8342

9280.5276

8705.9397

9959.9749

4.00E-04

2199.6985

2193.7286

2195.7588

2192.794

2184.9045

2189.3869

2191.4975

2193.0352

2201.9598

1940.0804

1865.8492

1871.5176

1984.8342

2651.4824

2796.8392

2655.2764

2810.8945

2701.7035

3445.3518

9422.6482

11411.593

10665.794

12130.487

3.00E-04

2357.8593

2367.0251

2301.6683

2364.794

2349.7487

2354.7035

2351.6784

2351.1558

2301.7688

2177.2362

2005.8693

2060.0804

2207.9397

2942.4322

3126.8141

2977.7337

3145.4523

3169.4975

4142.6784

12117.422

14843.985

13859.246

15798.899

2.00E-04

2720.0704

2721.3166

2717.8593

2737.2362

2737.4372

2715.6683

2713.7085

2732.9548

2527.1859

2447.2764

2347.0352

2390.0101

2499.3266

3416.6834

3686.5126

3535.0704

3741.2864

4028.8191

5430.0754

17564.221

21180.206

20099.714

22702.196

1.00E-04

3232.2312

3191.9095

3224.3719

3190.7437

3248.3216

3148.5427

3200.6935

3304.2915

3395.0653

3193.397

2914.0704

3068.1508

3079.5779

4259.1256

4887.2161

4723.9045

4932.3518

6167.8593

8921.2915

32454.814

40394.704

38274.864

43284.08

9.00E-05

3349.2261

3476.3116

3344.7538

3373.3668

3361.7286

3324.5126

3373.2161

3428.5327

3499.7186

3322.9146

3007.0754

3188.1206

3188.6332

4415.5879

5132.4824

4889.8342

5198.3869

6468.3417

9665.5729

36499.598

44655.573

42241.442

47656.889

8.00E-05

3504.804

3539.9899

3547.4472

3479.1859

3502.3317

3529.0352

3541.2161

3583.8392

3615.9598

3445.8593

3137.7688

3344.6533

3257.5779

4584.7839

5404.0704

5146.9397

5539.6683

7175.2663

10511.402

40534.156

49344.457

47385.558

53222.025

7.00E-05

3653.1156

3726.9246

3729.2261

3702.8442

3707.4874

3714.6734

3705.407

3880.5628

3774.4221

3564.2111

3340.1407

3468.0905

3436.4523

4746.5226

5731.8693

5404.6935

5891.3467

7878.804

11638.96

45481.166

56305.769

53515.744

60549.729

6.00E-05

3929.4673

3915.0854

3890.6834

3941.4774

3911.0854

3927.5075

3873.5075

4095.3065

4017.4673

3833.4372

3450.1106

3639.8593

3599.5879

4975.2362

6067.2362

5844.7387

6293.2462

8663.5678

13157.673

52073.91

64788.075

61990.95

69664.422

5.00E-05

4192.794

4190.3719

4227.0352

4170.392

4180.2211

4163.2261

4207.1759

4520.6633

4331.5678

4129.7889

3613.4673

3988.2814

3755.5176

5264.3819

6548.7538

6378.5025

6874.4372

9644.2513

14924.668

62609.307

77956.347

73659.774

82517.106

4.00E-05

4523.6181

4493.3668

4508.0302

4535.5276

4529.1859

4519.6784

4620.0302

5113.2563

4856.0603

4433.5176

3885.9095

4225.0653

3962.5025

5648.9246

7172.7688

7061.9447

7608.0553

11173.799

17715.101

76565.05

95891.744

91528.302

102076.31

3.00E-05

5188.9347

5054.4322

5068.2915

5110.2714

5073.4472

5049.0955

5369.0754

5866.1307

5367.0352

4857.8492

4231.0251

4689.5276

4313.9397

6265.4874

8135.8241

8043.603

8751.8191

13786.422

22453.111

100730.41

124742.73

119835.06

133002.63

2.00E-05

6466.5226

6381.6181

6361.9196

6518.8241

6220.7437

5920.0905

6424.4724

7012.2814

6266.6131

5553.2764

4841.196

5318.4824

4772.1206

7124.3417

9987.8442

9547.4975

10778.769

17824.211

30159.804

145903.06

184341.3

175563.38

196519.59

1.00E-05

8313.608

8557.6583

8151.3869

8708.9548

8502.7638

8496.1608

8866.8945

10567.688

8471.8291

7002.201

5876.4221

6555.9296

5697.799

9080.402

13627.683

13488.05

15949.482

29974.482

52077.955

282663.62

352860.69

340905.93

379743.73

 

神经网络训练集的数量最少可以是多少个?

迭代次数的最大值出现在训练集n的数量等于2的时候,而迭代次数最小的值出现在约n=200的位置。

神经网络训练集的数量最少可以是多少个?

训练集n=5000到n=200的图。也就是迭代次数随着训练集n的数量的减小,是先减小后增大的。

 

再比较分类准确率的平均值pave

 

 

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

400

300

200

100

50

40

30

20

10

5

4

3

2

δ

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

0.5

0.5155649

0.525283

0.5210321

0.520093

0.5255652

0.521097

0.5150104

0.5187518

0.5122981

0.524776

0.5280403

0.5248309

0.5243039

0.523722

0.5199432

0.5311897

0.5173657

0.5246111

0.5198907

0.5094933

0.5161269

0.5139115

0.5116212

0.4

0.8702259

0.8703283

0.8691944

0.869599

0.8684126

0.8697913

0.8704881

0.8753984

0.8709801

0.8724812

0.8622461

0.87115

0.8711874

0.8905262

0.8999221

0.9151123

0.8909333

0.85563

0.7201589

0.6832597

0.7042044

0.724747

0.701045

0.3

0.9501983

0.9508327

0.951532

0.9504206

0.9501284

0.951572

0.9504631

0.9496488

0.9508926

0.950006

0.9508951

0.9504031

0.950523

0.9517768

0.9544742

0.9534576

0.9351954

0.925817

0.8779859

0.8195625

0.7918144

0.7487862

0.7802931

0.2

0.9389767

0.9381375

0.9372059

0.9383623

0.9387095

0.9376455

0.9366689

0.9383198

0.9367114

0.9389867

0.9369037

0.9382724

0.9366589

0.9600188

0.9585602

0.9548138

0.9395711

0.9407425

0.9132167

0.8531924

0.8086731

0.7302766

0.7802856

0.1

0.9583904

0.9579258

0.9581856

0.9580707

0.9582555

0.9572265

0.9584978

0.9581281

0.9584553

0.9574363

0.9574513

0.957726

0.9537399

0.9612876

0.9627936

0.9591421

0.94327

0.9456952

0.9260842

0.863435

0.815996

0.7155809

0.7760547

0.01

0.9391315

0.9406251

0.9364716

0.9399083

0.9398683

0.9383048

0.9351254

0.9357748

0.9394762

0.9359072

0.9373458

0.9760807

0.9610952

0.9697194

0.9739678

0.9645219

0.9532828

0.9512448

0.9403479

0.8682778

0.8176419

0.7053233

0.7745886

0.001

0.9764778

0.9764953

0.97679

0.9765552

0.9767476

0.9764379

0.9766227

0.9765253

0.976303

0.9784359

0.9784809

0.9774619

0.9771372

0.9752415

0.9703662

0.9667323

0.9532254

0.9541695

0.9419088

0.868023

0.8182713

0.7041944

0.7746361

9.00E-04

0.9766651

0.9767625

0.9765078

0.9767625

0.9767476

0.976775

0.9766477

0.9766477

0.9766626

0.9780388

0.9785358

0.977829

0.9770148

0.9751266

0.9703588

0.9668596

0.9534052

0.9541495

0.9418164

0.8680305

0.8181189

0.7039971

0.7756801

8.00E-04

0.9767076

0.9768525

0.9766352

0.9766352

0.9767775

0.9767451

0.9766027

0.9766152

0.9767625

0.9780263

0.9785108

0.978326

0.9772795

0.9749593

0.970139

0.9671069

0.953098

0.954147

0.9418739

0.8677857

0.818601

0.7049487

0.7757101

7.00E-04

0.9770747

0.97685

0.9767625

0.9768949

0.9770448

0.9765627

0.9770373

0.9769549

0.9771946

0.9782361

0.9782786

0.9784234

0.9768574

0.9749593

0.9700266

0.967007

0.9527109

0.9542444

0.9419863

0.8676359

0.818004

0.7039322

0.7746886

6.00E-04

0.9778315

0.9774019

0.9778265

0.9775543

0.9777091

0.9775218

0.9777516

0.9774244

0.9780788

0.978366

0.9781537

0.9782436

0.9767001

0.9748069

0.9700615

0.9668072

0.9525136

0.9545041

0.9420537

0.868565

0.8179566

0.7024212

0.7743814

5.00E-04

0.9779913

0.9779564

0.9777816

0.977789

0.9777341

0.9779289

0.977844

0.9780288

0.9798645

0.9785408

0.9784959

0.97942

0.9776317

0.9748169

0.970144

0.9667572

0.9521364

0.9543867

0.9419488

0.8679206

0.8176968

0.7041595

0.776282

4.00E-04

0.9758235

0.9757036

0.9754838

0.9756137

0.9755687

0.9754663

0.9754188

0.9752165

0.9796597

0.9784784

0.9788205

0.9797596

0.9777865

0.9745172

0.970104

0.9665899

0.9519891

0.9544492

0.9419588

0.8673886

0.8183837

0.7037024

0.7755627

3.00E-04

0.9739328

0.9744073

0.9725991

0.9745047

0.9739752

0.9737255

0.9740377

0.9741701

0.9783885

0.9784409

0.9780363

0.9779139

0.977272

0.9737779

0.970069

0.9667073

0.9518892

0.9546165

0.9418714

0.8676484

0.8183762

0.70363

0.775238

2.00E-04

0.9794125

0.9797247

0.979872

0.9798995

0.9798745

0.9797821

0.9794449

0.979887

0.9790753

0.9769998

0.9784509

0.9773645

0.975726

0.973688

0.9695346

0.9666973

0.9515245

0.9547514

0.9421211

0.8683377

0.8177743

0.7033727

0.7759498

1.00E-04

0.980926

0.9810084

0.9808411

0.9809834

0.980951

0.9811283

0.980976

0.9806862

0.9790953

0.9768275

0.9756112

0.9740677

0.9746621

0.9729987

0.9682158

0.9665325

0.9513247

0.9548663

0.9421311

0.8678857

0.8183762

0.703635

0.7747785

9.00E-05

0.9806463

0.9803166

0.9806488

0.9809085

0.9807562

0.9806712

0.9806712

0.9806338

0.9789904

0.9763954

0.9749268

0.9736655

0.9745222

0.9728239

0.9681709

0.96646

0.9513797

0.9549712

0.9421112

0.8677458

0.8177518

0.7053533

0.774786

8.00E-05

0.9804839

0.9805938

0.9803815

0.9804664

0.9806563

0.9805364

0.9805264

0.9806663

0.9791327

0.9758684

0.9756361

0.9733683

0.9743973

0.972689

0.9682183

0.96649

0.9512373

0.9549837

0.9419963

0.868048

0.8178817

0.7029681

0.7755202

7.00E-05

0.9804015

0.9804864

0.9807237

0.9807312

0.9805788

0.9805988

0.980444

0.9805414

0.9792951

0.9754888

0.9756261

0.972719

0.9742325

0.9725916

0.9680984

0.9664276

0.9512573

0.9549837

0.942221

0.8683652

0.8182063

0.703123

0.7754153

6.00E-05

0.9813256

0.9811508

0.9811833

0.9813231

0.9813456

0.9812132

0.9805289

0.9806737

0.9784434

0.9753514

0.9749568

0.9721295

0.9740502

0.9724942

0.968086

0.96649

0.9511774

0.9549187

0.9421311

0.8678682

0.8182213

0.7048163

0.7757975

5.00E-05

0.9822272

0.9822472

0.9823596

0.9822123

0.982432

0.9821248

0.9808885

0.9808036

0.9782511

0.9748844

0.974185

0.9717849

0.9738304

0.9726041

0.9682658

0.9664376

0.95099

0.9551635

0.9422735

0.8676359

0.8176843

0.7048213

0.7754603

4.00E-05

0.9829091

0.9828691

0.9828117

0.9828092

0.9827642

0.9825619

0.9811333

0.980916

0.9781787

0.9747295

0.9733459

0.9712279

0.9735731

0.9727364

0.9681684

0.9665125

0.9510125

0.9550011

0.9422935

0.8679631

0.8180465

0.7020091

0.7761796

3.00E-05

0.9830414

0.9828966

0.983009

0.9822947

0.9825419

0.9817352

0.9812832

0.9813955

0.9792751

0.9737704

0.9723743

0.9703413

0.9730412

0.9730012

0.9682633

0.9665574

0.9508901

0.9549437

0.9420787

0.868008

0.8183937

0.7037798

0.7758599

2.00E-05

0.9835609

0.9836109

0.9834286

0.980424

0.9821698

0.9811833

0.9812607

0.9813231

0.9788006

0.9728014

0.9720346

0.9697419

0.9723718

0.9730511

0.9684231

0.9665974

0.9508152

0.9549187

0.9422061

0.8680455

0.8184411

0.7033278

0.7753179

1.00E-05

0.9823371

0.982442

0.980971

0.9800469

0.9825145

0.9821198

0.9801493

0.9805389

0.9776916

0.9709732

0.9717599

0.9697269

0.9712654

0.9724792

0.9684156

0.9664176

0.9500659

0.9547589

0.9423259

0.8676908

0.8181664

0.7034527

0.7754153

 

神经网络训练集的数量最少可以是多少个?

随着训练集n的减小分类准确率是减小的(不考虑n=2),

神经网络训练集的数量最少可以是多少个?

训练集数量n=5000到n=500的图像,

 

5000

500

500/5000

5.00E-05

0.982227239

0.974884362

0.992524258

4.00E-05

0.982909078

0.974729513

0.991678207

3.00E-05

0.98304145

0.973770443

0.990569058

2.00E-05

0.983560946

0.972801383

0.989060603

1.00E-05

0.982337133

0.970973156

0.988431693

比较n=500和n=5000的数据,虽然将训练集的数量减小到原来的1/10,但分类准确率只下降了约1%。

再比较n=5000和n=2500的数据

 

5000

2500

2500/5000

5.00E-05

0.982227239

0.982124839

0.999895746

4.00E-05

0.982909078

0.982561915

0.9996468

3.00E-05

0.98304145

0.981735217

0.998671233

2.00E-05

0.983560946

0.981183252

0.997582566

1.00E-05

0.982337133

0.982119844

0.999778804

训练集数量下降到一半,分类准确率下降约1‰,也就表明对这个网络完全可以将训练集的数量减到一半,分类差异不大。

Mnist的数据集的图片是从1开头,因此训练集的数量n=2意味着可以用1张图片实现分类。尽管分类准确率损失比较大。

 

因此对这个网络来说,从实用角度训练集数量的最小值可以是原来的50%,但如果仅让网络保持基本的分类能力,训练集数量的最小值是1个。