神经网络训练集的数量最少可以是多少个?
(mnist 0 ,2)---81*30*2---(1,0)(0,1)
用81*30*2的网络分类mnist的0和2。让训练集的数量n分别等于5000,4500,4000,3500,3000,2500,2000,1500,1000,500,400,300,200,100,50,40,30,20,10,5,4,3,2,共22个值。看看训练集的大小对分类结果到底有什么影响。
让收敛标准δ等于0.5到1e-5的25个值,每个值收敛199次,取平均值。因此共收敛了25*199*22次,首先比较迭代次数
5000 |
4500 |
4000 |
3500 |
3000 |
2500 |
2000 |
1500 |
1000 |
500 |
400 |
300 |
200 |
100 |
50 |
40 |
30 |
20 |
10 |
5 |
4 |
3 |
2 |
|
δ |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
0.5 |
8.8140704 |
9.1909548 |
8.8190955 |
8.4572864 |
10.462312 |
8.7035176 |
9.5175879 |
8.6582915 |
7.6582915 |
7.8743719 |
8.2562814 |
8.5678392 |
8.3919598 |
8.6633166 |
9.9145729 |
9.6432161 |
8.9949749 |
8.8994975 |
8.7135678 |
7.8643216 |
8.9346734 |
8.1155779 |
9.5778894 |
0.4 |
212.50251 |
211.55779 |
212.45226 |
212.45729 |
211.60804 |
211.91457 |
210.79899 |
210.69347 |
211.86935 |
211.48744 |
211.85427 |
211.43719 |
212.01508 |
210.1809 |
224.24121 |
233.84422 |
211.24121 |
189.16583 |
165.1809 |
147.88442 |
117.20101 |
91.221106 |
119.82412 |
0.3 |
267.47739 |
267.42714 |
268.35176 |
268.56784 |
267.55779 |
269.72362 |
266.93467 |
268.24121 |
268.46231 |
267.29146 |
268.93467 |
269.24623 |
269.44724 |
281.8794 |
295.1005 |
298.44724 |
268.88945 |
242.32161 |
211.32161 |
188.78894 |
153.60302 |
121.27136 |
156.47236 |
0.2 |
326.42714 |
326.14573 |
327.85427 |
327.41709 |
325.33166 |
325.94472 |
324.11558 |
324.00503 |
324.77387 |
326.1206 |
326.42211 |
323.15578 |
328.9196 |
321.23116 |
349.75879 |
343.45226 |
320.94975 |
290.57286 |
257.50251 |
230.33668 |
190.32161 |
151.46734 |
194.96482 |
0.1 |
412.12563 |
411.66834 |
412.71859 |
410.34673 |
410.65327 |
410.30653 |
411.80402 |
410.62814 |
412.46734 |
408.71859 |
409.21608 |
411.61307 |
407.94975 |
394.58291 |
419 |
418.37186 |
393.68844 |
358.02513 |
320.76884 |
296.84925 |
254.45226 |
208.36181 |
261.35176 |
0.01 |
687.25126 |
687.90452 |
688.32161 |
687.19095 |
687.64824 |
688.83417 |
688.84422 |
688.79899 |
687.38693 |
690.05528 |
687.34673 |
746.40704 |
658.22111 |
718.0402 |
776.55276 |
789.8794 |
801.15075 |
677.35678 |
668.50754 |
833.62312 |
841.84925 |
750.77387 |
895.1407 |
0.001 |
1432.1206 |
1434.809 |
1441.7588 |
1434.9146 |
1442.1206 |
1436.9548 |
1434.4925 |
1436.6633 |
1439.6432 |
1381.8291 |
1351.3769 |
1382.3518 |
1439.1457 |
1734.9648 |
1956.9548 |
1823 |
2014.5628 |
1685.5377 |
1984.206 |
4369.7337 |
5041.6734 |
4713.5025 |
5422.1608 |
9.00E-04 |
1456.1608 |
1460.7035 |
1451.5025 |
1447.8794 |
1450.7638 |
1451.6382 |
1455.809 |
1444.603 |
1446.0503 |
1433.6281 |
1400.4221 |
1446.2764 |
1478.4422 |
1850.0201 |
2017.0603 |
1923.8794 |
2103.8693 |
1782.3216 |
2089.8543 |
4776.5578 |
5523.2915 |
5151.5779 |
5912.6583 |
8.00E-04 |
1476.2613 |
1492.6734 |
1478.2111 |
1486.1206 |
1486.3518 |
1477.9899 |
1484.794 |
1490.6734 |
1486.2714 |
1503.6583 |
1462.2111 |
1503.4372 |
1508.5628 |
1926.8543 |
2131.3467 |
2013.9397 |
2179.4322 |
1878.5628 |
2247.1206 |
5199.6935 |
6138.7889 |
5759.2764 |
6572.0251 |
7.00E-04 |
1562.4925 |
1578.1809 |
1524.7538 |
1562.9548 |
1556.1608 |
1526.4623 |
1569.2261 |
1572.1508 |
1570.8241 |
1552.3719 |
1535.598 |
1539.4573 |
1623.6683 |
2041.7839 |
2241.4874 |
2113.6131 |
2288.2261 |
2009.7437 |
2436.6281 |
5852.8593 |
6856.0302 |
6487.9548 |
7382.8392 |
6.00E-04 |
1739.8291 |
1716.8945 |
1745.4774 |
1733.9598 |
1718.3116 |
1754.9849 |
1721.1156 |
1699.397 |
1714.6734 |
1623.407 |
1632.6834 |
1626.1709 |
1741.9899 |
2227.2714 |
2385.3819 |
2282.7186 |
2426.2462 |
2200.0302 |
2700.0251 |
6668.9397 |
7915.3166 |
7379.3266 |
8446.5829 |
5.00E-04 |
1973.005 |
1991.0854 |
1968.3417 |
1962 |
1989.9196 |
1976.9749 |
1995.7688 |
1994.6131 |
2007.6884 |
1738.794 |
1787.8191 |
1736.4925 |
1850.9849 |
2408.9146 |
2565.0653 |
2418.397 |
2598.3417 |
2403.1859 |
3030.9598 |
7778.8342 |
9280.5276 |
8705.9397 |
9959.9749 |
4.00E-04 |
2199.6985 |
2193.7286 |
2195.7588 |
2192.794 |
2184.9045 |
2189.3869 |
2191.4975 |
2193.0352 |
2201.9598 |
1940.0804 |
1865.8492 |
1871.5176 |
1984.8342 |
2651.4824 |
2796.8392 |
2655.2764 |
2810.8945 |
2701.7035 |
3445.3518 |
9422.6482 |
11411.593 |
10665.794 |
12130.487 |
3.00E-04 |
2357.8593 |
2367.0251 |
2301.6683 |
2364.794 |
2349.7487 |
2354.7035 |
2351.6784 |
2351.1558 |
2301.7688 |
2177.2362 |
2005.8693 |
2060.0804 |
2207.9397 |
2942.4322 |
3126.8141 |
2977.7337 |
3145.4523 |
3169.4975 |
4142.6784 |
12117.422 |
14843.985 |
13859.246 |
15798.899 |
2.00E-04 |
2720.0704 |
2721.3166 |
2717.8593 |
2737.2362 |
2737.4372 |
2715.6683 |
2713.7085 |
2732.9548 |
2527.1859 |
2447.2764 |
2347.0352 |
2390.0101 |
2499.3266 |
3416.6834 |
3686.5126 |
3535.0704 |
3741.2864 |
4028.8191 |
5430.0754 |
17564.221 |
21180.206 |
20099.714 |
22702.196 |
1.00E-04 |
3232.2312 |
3191.9095 |
3224.3719 |
3190.7437 |
3248.3216 |
3148.5427 |
3200.6935 |
3304.2915 |
3395.0653 |
3193.397 |
2914.0704 |
3068.1508 |
3079.5779 |
4259.1256 |
4887.2161 |
4723.9045 |
4932.3518 |
6167.8593 |
8921.2915 |
32454.814 |
40394.704 |
38274.864 |
43284.08 |
9.00E-05 |
3349.2261 |
3476.3116 |
3344.7538 |
3373.3668 |
3361.7286 |
3324.5126 |
3373.2161 |
3428.5327 |
3499.7186 |
3322.9146 |
3007.0754 |
3188.1206 |
3188.6332 |
4415.5879 |
5132.4824 |
4889.8342 |
5198.3869 |
6468.3417 |
9665.5729 |
36499.598 |
44655.573 |
42241.442 |
47656.889 |
8.00E-05 |
3504.804 |
3539.9899 |
3547.4472 |
3479.1859 |
3502.3317 |
3529.0352 |
3541.2161 |
3583.8392 |
3615.9598 |
3445.8593 |
3137.7688 |
3344.6533 |
3257.5779 |
4584.7839 |
5404.0704 |
5146.9397 |
5539.6683 |
7175.2663 |
10511.402 |
40534.156 |
49344.457 |
47385.558 |
53222.025 |
7.00E-05 |
3653.1156 |
3726.9246 |
3729.2261 |
3702.8442 |
3707.4874 |
3714.6734 |
3705.407 |
3880.5628 |
3774.4221 |
3564.2111 |
3340.1407 |
3468.0905 |
3436.4523 |
4746.5226 |
5731.8693 |
5404.6935 |
5891.3467 |
7878.804 |
11638.96 |
45481.166 |
56305.769 |
53515.744 |
60549.729 |
6.00E-05 |
3929.4673 |
3915.0854 |
3890.6834 |
3941.4774 |
3911.0854 |
3927.5075 |
3873.5075 |
4095.3065 |
4017.4673 |
3833.4372 |
3450.1106 |
3639.8593 |
3599.5879 |
4975.2362 |
6067.2362 |
5844.7387 |
6293.2462 |
8663.5678 |
13157.673 |
52073.91 |
64788.075 |
61990.95 |
69664.422 |
5.00E-05 |
4192.794 |
4190.3719 |
4227.0352 |
4170.392 |
4180.2211 |
4163.2261 |
4207.1759 |
4520.6633 |
4331.5678 |
4129.7889 |
3613.4673 |
3988.2814 |
3755.5176 |
5264.3819 |
6548.7538 |
6378.5025 |
6874.4372 |
9644.2513 |
14924.668 |
62609.307 |
77956.347 |
73659.774 |
82517.106 |
4.00E-05 |
4523.6181 |
4493.3668 |
4508.0302 |
4535.5276 |
4529.1859 |
4519.6784 |
4620.0302 |
5113.2563 |
4856.0603 |
4433.5176 |
3885.9095 |
4225.0653 |
3962.5025 |
5648.9246 |
7172.7688 |
7061.9447 |
7608.0553 |
11173.799 |
17715.101 |
76565.05 |
95891.744 |
91528.302 |
102076.31 |
3.00E-05 |
5188.9347 |
5054.4322 |
5068.2915 |
5110.2714 |
5073.4472 |
5049.0955 |
5369.0754 |
5866.1307 |
5367.0352 |
4857.8492 |
4231.0251 |
4689.5276 |
4313.9397 |
6265.4874 |
8135.8241 |
8043.603 |
8751.8191 |
13786.422 |
22453.111 |
100730.41 |
124742.73 |
119835.06 |
133002.63 |
2.00E-05 |
6466.5226 |
6381.6181 |
6361.9196 |
6518.8241 |
6220.7437 |
5920.0905 |
6424.4724 |
7012.2814 |
6266.6131 |
5553.2764 |
4841.196 |
5318.4824 |
4772.1206 |
7124.3417 |
9987.8442 |
9547.4975 |
10778.769 |
17824.211 |
30159.804 |
145903.06 |
184341.3 |
175563.38 |
196519.59 |
1.00E-05 |
8313.608 |
8557.6583 |
8151.3869 |
8708.9548 |
8502.7638 |
8496.1608 |
8866.8945 |
10567.688 |
8471.8291 |
7002.201 |
5876.4221 |
6555.9296 |
5697.799 |
9080.402 |
13627.683 |
13488.05 |
15949.482 |
29974.482 |
52077.955 |
282663.62 |
352860.69 |
340905.93 |
379743.73 |
迭代次数的最大值出现在训练集n的数量等于2的时候,而迭代次数最小的值出现在约n=200的位置。
训练集n=5000到n=200的图。也就是迭代次数随着训练集n的数量的减小,是先减小后增大的。
再比较分类准确率的平均值pave
5000 |
4500 |
4000 |
3500 |
3000 |
2500 |
2000 |
1500 |
1000 |
500 |
400 |
300 |
200 |
100 |
50 |
40 |
30 |
20 |
10 |
5 |
4 |
3 |
2 |
|
δ |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
0.5 |
0.5155649 |
0.525283 |
0.5210321 |
0.520093 |
0.5255652 |
0.521097 |
0.5150104 |
0.5187518 |
0.5122981 |
0.524776 |
0.5280403 |
0.5248309 |
0.5243039 |
0.523722 |
0.5199432 |
0.5311897 |
0.5173657 |
0.5246111 |
0.5198907 |
0.5094933 |
0.5161269 |
0.5139115 |
0.5116212 |
0.4 |
0.8702259 |
0.8703283 |
0.8691944 |
0.869599 |
0.8684126 |
0.8697913 |
0.8704881 |
0.8753984 |
0.8709801 |
0.8724812 |
0.8622461 |
0.87115 |
0.8711874 |
0.8905262 |
0.8999221 |
0.9151123 |
0.8909333 |
0.85563 |
0.7201589 |
0.6832597 |
0.7042044 |
0.724747 |
0.701045 |
0.3 |
0.9501983 |
0.9508327 |
0.951532 |
0.9504206 |
0.9501284 |
0.951572 |
0.9504631 |
0.9496488 |
0.9508926 |
0.950006 |
0.9508951 |
0.9504031 |
0.950523 |
0.9517768 |
0.9544742 |
0.9534576 |
0.9351954 |
0.925817 |
0.8779859 |
0.8195625 |
0.7918144 |
0.7487862 |
0.7802931 |
0.2 |
0.9389767 |
0.9381375 |
0.9372059 |
0.9383623 |
0.9387095 |
0.9376455 |
0.9366689 |
0.9383198 |
0.9367114 |
0.9389867 |
0.9369037 |
0.9382724 |
0.9366589 |
0.9600188 |
0.9585602 |
0.9548138 |
0.9395711 |
0.9407425 |
0.9132167 |
0.8531924 |
0.8086731 |
0.7302766 |
0.7802856 |
0.1 |
0.9583904 |
0.9579258 |
0.9581856 |
0.9580707 |
0.9582555 |
0.9572265 |
0.9584978 |
0.9581281 |
0.9584553 |
0.9574363 |
0.9574513 |
0.957726 |
0.9537399 |
0.9612876 |
0.9627936 |
0.9591421 |
0.94327 |
0.9456952 |
0.9260842 |
0.863435 |
0.815996 |
0.7155809 |
0.7760547 |
0.01 |
0.9391315 |
0.9406251 |
0.9364716 |
0.9399083 |
0.9398683 |
0.9383048 |
0.9351254 |
0.9357748 |
0.9394762 |
0.9359072 |
0.9373458 |
0.9760807 |
0.9610952 |
0.9697194 |
0.9739678 |
0.9645219 |
0.9532828 |
0.9512448 |
0.9403479 |
0.8682778 |
0.8176419 |
0.7053233 |
0.7745886 |
0.001 |
0.9764778 |
0.9764953 |
0.97679 |
0.9765552 |
0.9767476 |
0.9764379 |
0.9766227 |
0.9765253 |
0.976303 |
0.9784359 |
0.9784809 |
0.9774619 |
0.9771372 |
0.9752415 |
0.9703662 |
0.9667323 |
0.9532254 |
0.9541695 |
0.9419088 |
0.868023 |
0.8182713 |
0.7041944 |
0.7746361 |
9.00E-04 |
0.9766651 |
0.9767625 |
0.9765078 |
0.9767625 |
0.9767476 |
0.976775 |
0.9766477 |
0.9766477 |
0.9766626 |
0.9780388 |
0.9785358 |
0.977829 |
0.9770148 |
0.9751266 |
0.9703588 |
0.9668596 |
0.9534052 |
0.9541495 |
0.9418164 |
0.8680305 |
0.8181189 |
0.7039971 |
0.7756801 |
8.00E-04 |
0.9767076 |
0.9768525 |
0.9766352 |
0.9766352 |
0.9767775 |
0.9767451 |
0.9766027 |
0.9766152 |
0.9767625 |
0.9780263 |
0.9785108 |
0.978326 |
0.9772795 |
0.9749593 |
0.970139 |
0.9671069 |
0.953098 |
0.954147 |
0.9418739 |
0.8677857 |
0.818601 |
0.7049487 |
0.7757101 |
7.00E-04 |
0.9770747 |
0.97685 |
0.9767625 |
0.9768949 |
0.9770448 |
0.9765627 |
0.9770373 |
0.9769549 |
0.9771946 |
0.9782361 |
0.9782786 |
0.9784234 |
0.9768574 |
0.9749593 |
0.9700266 |
0.967007 |
0.9527109 |
0.9542444 |
0.9419863 |
0.8676359 |
0.818004 |
0.7039322 |
0.7746886 |
6.00E-04 |
0.9778315 |
0.9774019 |
0.9778265 |
0.9775543 |
0.9777091 |
0.9775218 |
0.9777516 |
0.9774244 |
0.9780788 |
0.978366 |
0.9781537 |
0.9782436 |
0.9767001 |
0.9748069 |
0.9700615 |
0.9668072 |
0.9525136 |
0.9545041 |
0.9420537 |
0.868565 |
0.8179566 |
0.7024212 |
0.7743814 |
5.00E-04 |
0.9779913 |
0.9779564 |
0.9777816 |
0.977789 |
0.9777341 |
0.9779289 |
0.977844 |
0.9780288 |
0.9798645 |
0.9785408 |
0.9784959 |
0.97942 |
0.9776317 |
0.9748169 |
0.970144 |
0.9667572 |
0.9521364 |
0.9543867 |
0.9419488 |
0.8679206 |
0.8176968 |
0.7041595 |
0.776282 |
4.00E-04 |
0.9758235 |
0.9757036 |
0.9754838 |
0.9756137 |
0.9755687 |
0.9754663 |
0.9754188 |
0.9752165 |
0.9796597 |
0.9784784 |
0.9788205 |
0.9797596 |
0.9777865 |
0.9745172 |
0.970104 |
0.9665899 |
0.9519891 |
0.9544492 |
0.9419588 |
0.8673886 |
0.8183837 |
0.7037024 |
0.7755627 |
3.00E-04 |
0.9739328 |
0.9744073 |
0.9725991 |
0.9745047 |
0.9739752 |
0.9737255 |
0.9740377 |
0.9741701 |
0.9783885 |
0.9784409 |
0.9780363 |
0.9779139 |
0.977272 |
0.9737779 |
0.970069 |
0.9667073 |
0.9518892 |
0.9546165 |
0.9418714 |
0.8676484 |
0.8183762 |
0.70363 |
0.775238 |
2.00E-04 |
0.9794125 |
0.9797247 |
0.979872 |
0.9798995 |
0.9798745 |
0.9797821 |
0.9794449 |
0.979887 |
0.9790753 |
0.9769998 |
0.9784509 |
0.9773645 |
0.975726 |
0.973688 |
0.9695346 |
0.9666973 |
0.9515245 |
0.9547514 |
0.9421211 |
0.8683377 |
0.8177743 |
0.7033727 |
0.7759498 |
1.00E-04 |
0.980926 |
0.9810084 |
0.9808411 |
0.9809834 |
0.980951 |
0.9811283 |
0.980976 |
0.9806862 |
0.9790953 |
0.9768275 |
0.9756112 |
0.9740677 |
0.9746621 |
0.9729987 |
0.9682158 |
0.9665325 |
0.9513247 |
0.9548663 |
0.9421311 |
0.8678857 |
0.8183762 |
0.703635 |
0.7747785 |
9.00E-05 |
0.9806463 |
0.9803166 |
0.9806488 |
0.9809085 |
0.9807562 |
0.9806712 |
0.9806712 |
0.9806338 |
0.9789904 |
0.9763954 |
0.9749268 |
0.9736655 |
0.9745222 |
0.9728239 |
0.9681709 |
0.96646 |
0.9513797 |
0.9549712 |
0.9421112 |
0.8677458 |
0.8177518 |
0.7053533 |
0.774786 |
8.00E-05 |
0.9804839 |
0.9805938 |
0.9803815 |
0.9804664 |
0.9806563 |
0.9805364 |
0.9805264 |
0.9806663 |
0.9791327 |
0.9758684 |
0.9756361 |
0.9733683 |
0.9743973 |
0.972689 |
0.9682183 |
0.96649 |
0.9512373 |
0.9549837 |
0.9419963 |
0.868048 |
0.8178817 |
0.7029681 |
0.7755202 |
7.00E-05 |
0.9804015 |
0.9804864 |
0.9807237 |
0.9807312 |
0.9805788 |
0.9805988 |
0.980444 |
0.9805414 |
0.9792951 |
0.9754888 |
0.9756261 |
0.972719 |
0.9742325 |
0.9725916 |
0.9680984 |
0.9664276 |
0.9512573 |
0.9549837 |
0.942221 |
0.8683652 |
0.8182063 |
0.703123 |
0.7754153 |
6.00E-05 |
0.9813256 |
0.9811508 |
0.9811833 |
0.9813231 |
0.9813456 |
0.9812132 |
0.9805289 |
0.9806737 |
0.9784434 |
0.9753514 |
0.9749568 |
0.9721295 |
0.9740502 |
0.9724942 |
0.968086 |
0.96649 |
0.9511774 |
0.9549187 |
0.9421311 |
0.8678682 |
0.8182213 |
0.7048163 |
0.7757975 |
5.00E-05 |
0.9822272 |
0.9822472 |
0.9823596 |
0.9822123 |
0.982432 |
0.9821248 |
0.9808885 |
0.9808036 |
0.9782511 |
0.9748844 |
0.974185 |
0.9717849 |
0.9738304 |
0.9726041 |
0.9682658 |
0.9664376 |
0.95099 |
0.9551635 |
0.9422735 |
0.8676359 |
0.8176843 |
0.7048213 |
0.7754603 |
4.00E-05 |
0.9829091 |
0.9828691 |
0.9828117 |
0.9828092 |
0.9827642 |
0.9825619 |
0.9811333 |
0.980916 |
0.9781787 |
0.9747295 |
0.9733459 |
0.9712279 |
0.9735731 |
0.9727364 |
0.9681684 |
0.9665125 |
0.9510125 |
0.9550011 |
0.9422935 |
0.8679631 |
0.8180465 |
0.7020091 |
0.7761796 |
3.00E-05 |
0.9830414 |
0.9828966 |
0.983009 |
0.9822947 |
0.9825419 |
0.9817352 |
0.9812832 |
0.9813955 |
0.9792751 |
0.9737704 |
0.9723743 |
0.9703413 |
0.9730412 |
0.9730012 |
0.9682633 |
0.9665574 |
0.9508901 |
0.9549437 |
0.9420787 |
0.868008 |
0.8183937 |
0.7037798 |
0.7758599 |
2.00E-05 |
0.9835609 |
0.9836109 |
0.9834286 |
0.980424 |
0.9821698 |
0.9811833 |
0.9812607 |
0.9813231 |
0.9788006 |
0.9728014 |
0.9720346 |
0.9697419 |
0.9723718 |
0.9730511 |
0.9684231 |
0.9665974 |
0.9508152 |
0.9549187 |
0.9422061 |
0.8680455 |
0.8184411 |
0.7033278 |
0.7753179 |
1.00E-05 |
0.9823371 |
0.982442 |
0.980971 |
0.9800469 |
0.9825145 |
0.9821198 |
0.9801493 |
0.9805389 |
0.9776916 |
0.9709732 |
0.9717599 |
0.9697269 |
0.9712654 |
0.9724792 |
0.9684156 |
0.9664176 |
0.9500659 |
0.9547589 |
0.9423259 |
0.8676908 |
0.8181664 |
0.7034527 |
0.7754153 |
随着训练集n的减小分类准确率是减小的(不考虑n=2),
训练集数量n=5000到n=500的图像,
5000 |
500 |
500/5000 |
|
5.00E-05 |
0.982227239 |
0.974884362 |
0.992524258 |
4.00E-05 |
0.982909078 |
0.974729513 |
0.991678207 |
3.00E-05 |
0.98304145 |
0.973770443 |
0.990569058 |
2.00E-05 |
0.983560946 |
0.972801383 |
0.989060603 |
1.00E-05 |
0.982337133 |
0.970973156 |
0.988431693 |
比较n=500和n=5000的数据,虽然将训练集的数量减小到原来的1/10,但分类准确率只下降了约1%。
再比较n=5000和n=2500的数据
5000 |
2500 |
2500/5000 |
|
5.00E-05 |
0.982227239 |
0.982124839 |
0.999895746 |
4.00E-05 |
0.982909078 |
0.982561915 |
0.9996468 |
3.00E-05 |
0.98304145 |
0.981735217 |
0.998671233 |
2.00E-05 |
0.983560946 |
0.981183252 |
0.997582566 |
1.00E-05 |
0.982337133 |
0.982119844 |
0.999778804 |
训练集数量下降到一半,分类准确率下降约1‰,也就表明对这个网络完全可以将训练集的数量减到一半,分类差异不大。
Mnist的数据集的图片是从1开头,因此训练集的数量n=2意味着可以用1张图片实现分类。尽管分类准确率损失比较大。
因此对这个网络来说,从实用角度训练集数量的最小值可以是原来的50%,但如果仅让网络保持基本的分类能力,训练集数量的最小值是1个。