java验证码识别--4
http://blog.****.net/problc/article/details/5846614
java验证码识别--1
http://blog.****.net/problc/article/details/5794460
java验证码识别--2
http://blog.****.net/problc/article/details/5797507
java验证码识别--3
http://blog.****.net/problc/article/details/5800093
java验证码识别--4
http://blog.****.net/problc/article/details/5846614
java验证码识别--5
http://blog.****.net/problc/article/details/5983276
(本文仅用于学习研究图像匹配识别原理,不得用于其他用途。)
完整eclipse工程http://download.****.net/detail/problc/3829004
验证码识别如果识别率都是100%,那验证码也就没存在的必要了。
其实很多验证码能达到10%的识别率就不错了。
下面来一个稍微复杂一点的,识别率85%左右。
看验证码
挑一张来看
放大看,我们会发现干扰线是纯黑色的,因此去干扰线的方法就有了
对点color[i][j],如果color[i+1][j],color[i-1][j],color[i][j+1],color[i][j-1]都是纯黑或者纯白色的,就认为color[i][j]是干扰,将color[i][j]置为白色。
处理之后
这样就简单了,分割也简单。
识别结果
啥也不说了,贴代码
- public class ImagePreProcess4 {
- private static Map<BufferedImage, String> trainMap = null;
- private static int index = 0;
- public static int isBlack(int colorInt) {
- Color color = new Color(colorInt);
- if (color.getRed() + color.getGreen() + color.getBlue() <= 300) {
- return 1;
- }
- return 0;
- }
- public static int isWhite(int colorInt) {
- Color color = new Color(colorInt);
- if (color.getRed() + color.getGreen() + color.getBlue() > 300) {
- return 1;
- }
- return 0;
- }
- public static int getColorBright(int colorInt) {
- Color color = new Color(colorInt);
- return color.getRed() + color.getGreen() + color.getBlue();
- }
- public static int isBlackOrWhite(int colorInt) {
- if (getColorBright(colorInt) < 30 || getColorBright(colorInt) > 730) {
- return 1;
- }
- return 0;
- }
- public static BufferedImage removeBackgroud(String picFile)
- throws Exception {
- BufferedImage img = ImageIO.read(new File(picFile));
- int width = img.getWidth();
- int height = img.getHeight();
- for (int x = 1; x < width - 1; ++x) {
- for (int y = 1; y < height - 1; ++y) {
- if (getColorBright(img.getRGB(x, y)) < 100) {
- if (isBlackOrWhite(img.getRGB(x - 1, y))
- + isBlackOrWhite(img.getRGB(x + 1, y))
- + isBlackOrWhite(img.getRGB(x, y - 1))
- + isBlackOrWhite(img.getRGB(x, y + 1)) == 4) {
- img.setRGB(x, y, Color.WHITE.getRGB());
- }
- }
- }
- }
- for (int x = 1; x < width - 1; ++x) {
- for (int y = 1; y < height - 1; ++y) {
- if (getColorBright(img.getRGB(x, y)) < 100) {
- if (isBlackOrWhite(img.getRGB(x - 1, y))
- + isBlackOrWhite(img.getRGB(x + 1, y))
- + isBlackOrWhite(img.getRGB(x, y - 1))
- + isBlackOrWhite(img.getRGB(x, y + 1)) == 4) {
- img.setRGB(x, y, Color.WHITE.getRGB());
- }
- }
- }
- }
- img = img.getSubimage(1, 1, img.getWidth() - 2, img.getHeight() - 2);
- return img;
- }
- public static BufferedImage removeBlank(BufferedImage img) throws Exception {
- int width = img.getWidth();
- int height = img.getHeight();
- int start = 0;
- int end = 0;
- Label1: for (int y = 0; y < height; ++y) {
- for (int x = 0; x < width; ++x) {
- if (isBlack(img.getRGB(x, y)) == 1) {
- start = y;
- break Label1;
- }
- }
- }
- Label2: for (int y = height - 1; y >= 0; --y) {
- for (int x = 0; x < width; ++x) {
- if (isBlack(img.getRGB(x, y)) == 1) {
- end = y;
- break Label2;
- }
- }
- }
- return img.getSubimage(0, start, width, end - start + 1);
- }
- public static List<BufferedImage> splitImage(BufferedImage img)
- throws Exception {
- List<BufferedImage> subImgs = new ArrayList<BufferedImage>();
- int width = img.getWidth();
- int height = img.getHeight();
- List<Integer> weightlist = new ArrayList<Integer>();
- for (int x = 0; x < width; ++x) {
- int count = 0;
- for (int y = 0; y < height; ++y) {
- if (isBlack(img.getRGB(x, y)) == 1) {
- count++;
- }
- }
- weightlist.add(count);
- }
- for (int i = 0; i < weightlist.size(); i++) {
- int length = 0;
- while (i < weightlist.size() && weightlist.get(i) > 0) {
- i++;
- length++;
- }
- if (length > 18) {
- subImgs.add(removeBlank(img.getSubimage(i - length, 0,
- length / 2, height)));
- subImgs.add(removeBlank(img.getSubimage(i - length / 2, 0,
- length / 2, height)));
- } else if (length > 5) {
- subImgs.add(removeBlank(img.getSubimage(i - length, 0, length,
- height)));
- }
- }
- return subImgs;
- }
- public static Map<BufferedImage, String> loadTrainData() throws Exception {
- if (trainMap == null) {
- Map<BufferedImage, String> map = new HashMap<BufferedImage, String>();
- File dir = new File("train4");
- File[] files = dir.listFiles();
- for (File file : files) {
- map.put(ImageIO.read(file), file.getName().charAt(0) + "");
- }
- trainMap = map;
- }
- return trainMap;
- }
- public static int getDistance(BufferedImage img, BufferedImage sample) {
- int width = img.getWidth();
- int height = img.getHeight();
- int count = 0;
- int widthmin = width < sample.getWidth() ? width : sample.getWidth();
- int heightmin = height < sample.getHeight() ? height : sample
- .getHeight();
- for (int x = 0; x < widthmin; ++x) {
- for (int y = 0; y < heightmin; ++y) {
- if (isWhite(img.getRGB(x, y)) != isWhite(sample.getRGB(x, y))) {
- count++;
- }
- }
- }
- return count;
- }
- public static boolean isNotEight(BufferedImage img) {
- int width = img.getWidth();
- int height = img.getHeight();
- int minCount = width;
- for (int y = height / 2 - 2; y < height / 2 + 2; ++y) {
- int count = 0;
- for (int x = 0; x < width / 2 + 2; ++x) {
- if (isBlack(img.getRGB(x, y)) == 1) {
- count++;
- }
- }
- minCount = Math.min(count, minCount);
- }
- return minCount < 2;
- }
- public static boolean isNotThree(BufferedImage img) {
- int width = img.getWidth();
- int height = img.getHeight();
- int minCount = width;
- for (int y = height / 2 - 3; y < height / 2 + 3; ++y) {
- int count = 0;
- for (int x = 0; x < width / 2 + 1; ++x) {
- if (isBlack(img.getRGB(x, y)) == 1) {
- count++;
- }
- }
- minCount = Math.min(count, minCount);
- }
- return minCount > 0;
- }
- public static boolean isNotFive(BufferedImage img) {
- int width = img.getWidth();
- int height = img.getHeight();
- int minCount = width;
- for (int y = 0; y < height / 3; ++y) {
- int count = 0;
- for (int x = width * 2 / 3; x < width; ++x) {
- if (isBlack(img.getRGB(x, y)) == 1) {
- count++;
- }
- }
- minCount = Math.min(count, minCount);
- }
- return minCount > 0;
- }
- public static String getSingleCharOcr(BufferedImage img,
- Map<BufferedImage, String> map) throws Exception {
- String result = "#";
- int width = img.getWidth();
- int height = img.getHeight();
- int min = width * height;
- boolean bNotEight = isNotEight(img);
- boolean bNotThree = isNotThree(img);
- boolean bNotFive = isNotFive(img);
- for (BufferedImage bi : map.keySet()) {
- if (bNotThree && map.get(bi).startsWith("3"))
- continue;
- if (bNotEight && map.get(bi).startsWith("8"))
- continue;
- if (bNotFive && map.get(bi).startsWith("5"))
- continue;
- double count1 = getBlackCount(img);
- double count2 = getBlackCount(bi);
- if (Math.abs(count1 - count2) / Math.max(count1, count2) > 0.25)
- continue;
- int count = 0;
- if (width < bi.getWidth() && height < bi.getHeight()) {
- for (int m = 0; m <= bi.getWidth() - width; m++) {
- for (int n = 0; n <= bi.getHeight() - height; n++) {
- Label1: for (int x = m; x < m + width; ++x) {
- for (int y = n; y < n + height; ++y) {
- if (isWhite(img.getRGB(x - m, y - n)) != isWhite(bi
- .getRGB(x, y))) {
- count++;
- if (count >= min)
- break Label1;
- }
- }
- }
- }
- }
- } else {
- int widthmin = width < bi.getWidth() ? width : bi.getWidth();
- int heightmin = height < bi.getHeight() ? height : bi
- .getHeight();
- Label1: for (int x = 0; x < widthmin; ++x) {
- for (int y = 0; y < heightmin; ++y) {
- if (isWhite(img.getRGB(x, y)) != isWhite(bi
- .getRGB(x, y))) {
- count++;
- if (count >= min)
- break Label1;
- }
- }
- }
- }
- if (count < min) {
- min = count;
- result = map.get(bi);
- }
- }
- return result;
- }
- public static String getAllOcr(String file) throws Exception {
- BufferedImage img = removeBackgroud(file);
- List<BufferedImage> listImg = splitImage(img);
- Map<BufferedImage, String> map = loadTrainData();
- String result = "";
- for (BufferedImage bi : listImg) {
- result += getSingleCharOcr(bi, map);
- }
- System.out.println(result);
- ImageIO.write(img, "JPG", new File("result4//" + result + ".jpg"));
- return result;
- }
- public static int getBlackCount(BufferedImage img) {
- int width = img.getWidth();
- int height = img.getHeight();
- int count = 0;
- for (int x = 0; x < width; ++x) {
- for (int y = 0; y < height; ++y) {
- if (isBlack(img.getRGB(x, y)) == 1) {
- count++;
- }
- }
- }
- return count;
- }
- public static void downloadImage() {
- HttpClient httpClient = new HttpClient();
- GetMethod getMethod = new GetMethod(
- "http://reg.keepc.com/getcode/getCode.php");
- for (int i = 0; i < 30; i++) {
- try {
- // 执行getMethod
- int statusCode = httpClient.executeMethod(getMethod);
- if (statusCode != HttpStatus.SC_OK) {
- System.err.println("Method failed: "
- + getMethod.getStatusLine());
- }
- // 读取内容
- String picName = "img4//" + i + ".jpg";
- InputStream inputStream = getMethod.getResponseBodyAsStream();
- OutputStream outStream = new FileOutputStream(picName);
- IOUtils.copy(inputStream, outStream);
- outStream.close();
- System.out.println(i + "OK!");
- } catch (Exception e) {
- e.printStackTrace();
- } finally {
- // 释放连接
- getMethod.releaseConnection();
- }
- }
- }
- public static void trainData() throws Exception {
- File dir = new File("temp4");
- File[] files = dir.listFiles();
- for (File file : files) {
- BufferedImage img = removeBackgroud("temp4//" + file.getName());
- List<BufferedImage> listImg = splitImage(img);
- if (listImg.size() == 4) {
- for (int j = 0; j < listImg.size(); ++j) {
- ImageIO.write(listImg.get(j), "JPG", new File("train4//"
- + file.getName().charAt(j) + "-" + (index++)
- + ".jpg"));
- }
- }
- }
- }
- /**
- * @param args
- * @throws Exception
- */
- public static void main(String[] args) throws Exception {
- // downloadImage();
- // trainData();
- for (int i = 0; i < 30; ++i) {
- String text = getAllOcr("img4//" + i + ".jpg");
- System.out.println(i + ".jpg = " + text);
- }
- }
- }
相关推荐
- Java设计模式(4):工厂模式
- Java设计模式4:工厂模式
- java基础班---4-6
- 20145322《Java程序设计》第4次实验报告
- java List的4种实现类
- Java之实现简单中文笔画验证码
- 初学者遇到java.lang.NoClassDefFoundError: org/dom4j/DocumentException解决方法
- 手机验证码免费10条\java、C#、html....
- java.lang.NoClassDefFoundError: org/neo4j/driver/v1/AuthTokens
- java安装,DOS识别不出javac命令
- 如何在 IAR和 KEIL中计算 CRC值
- python中计算BLEU分数