ubuntu16.04+cuda9.2+cudnn7.1.4+opencv3.1.4安装caffe
注:该文章建立于cuda和cudnn都已经安装成功的前提下进行。
参考博客:https://blog.****.net/u012939880/article/details/82887985
1.准备caffe环境(官网安装教程:http://caffe.berkeleyvision.org/installation.html)
a)cuda ,官方说需要cuda7以上版本,这里我们已经安装好了cuda9.2最新版本
b)Blas,好像是一个数学的计算库, 包括矩阵计算啥的, 有MKL, ATLAS, OpenBLAS等都可以, 默认支持MKL, 这个选择不同配置的makefile-config. 我看OpenBLAS亲切, 于是就上的OpenBLAS
#sudo apt-get install libopenblas-dev
c)Boost, 这个是c++的一个封装库, 很强大, 有很多模块. 如果不考虑pycaffe啥的, 可以直接用apt安装(# apt install libboost-all-dev), 但是我这里用的anaconda安装的python3.6, 考虑到apt安装的默认python3.5版本不兼容, 所以下载的boost重新编译的.
Boost没有立即git最新版本, 是以前下载的(1.66.0), 但和最新版本应该不超过三个月, 相差不大, 所以最新版本(1.68.0)应该也没有很大的问题, 灵活处理, 欢迎交流.
下载,编译与安装:
新建一个文件夹叫workspace
# cd workspace
# wget https://dl.bintray.com/boostorg/release/1.66.0/source/boost_1_66_0.tar.gz
# tar xf boost_1_66_0.tar.gz
# cd boost_1_66_0
# ./bootstrap.sh --with-libraries=python --with-toolset=gcc
# ./b2 cflags='-fPIC' cxxflags='-fPIC' –with-python include="/root/anaconda3/include/python3.6m/"
# 这里的include根据自己的python环境进行修改即可
# ./b2 install
d) Protobuf, gflags, hdf5, glog. 前面三个在Ubuntu上可以用apt进行安装, 最后一个要git源码安装.
# apt install libprotobuf-dev libgflags-dev libhdf5-dev
# cd $HOME/workspace && git clone https://github.com/google/glog.git
# cd glog
# ./autogen.sh && ./configure && make && make install
#如果没有安装autogen工具, 百度安装下即可,好像是sudo apt-get install autogen就可以安装autogen
e)opencv
# sudo apt-get install libopencv-dev
f)lo库,官方需要lmdb和leveldb
#sudo apt-get install liblmdb-dev libleveldb-dev
或者以上步骤通过下面的依赖包安装
1.安装依赖包:
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
sudo apt-get install git cmake build-essential
2.github网站https://github.com/BVLC/caffe下载caffe-master.zip
点击路色clone or download 下载zip文件,然后解压到home目录下并改名为caffe
1)进入caffe目录
cd caffe
2)将Makefilel.config.example文件复制一份更名为 Makefile.config
sudo cp Makefilel.config.example Makefile.config
3)修改Makefile.config文件内容(这里主要是配置问题,请各自根据需要进行配置,只要有一点英语基础的同学大概都能看得懂这个文件)
sudo gedit Makefile.config
以下是我的Makefile.config文件,改动的地方已标注
# Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!
# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1
# uncomment to disable IO dependencies and corresponding data layers
USE_OPENCV := 1
# USE_LEVELDB := 0
# USE_LMDB := 1
# This code is taken from https://github.com/sh1r0/caffe-android-lib
# USE_HDF5 := 0
# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1
# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
#CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \
# -gencode arch=compute_35,code=sm_35
CUDA_ARCH := -gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
#BLAS := atlas
BLAS := open
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
#PYTHON_INCLUDE := /usr/include/python2.7 \
# /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda3
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
# $(ANACONDA_HOME)/include/python2.7 \
# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
# Uncomment to use Python 3 (default is Python 2)
PYTHON_LIBRARIES := boost_python3 python3.6m
PYTHON_INCLUDE := /usr/include/python3.6m \
$(ANACONDA_HOME)/include/python3.6m \
/usr/lib/python3.6/dist-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
# PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib \
/home/lab305/workplace/boost_1_66_0/stage/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1
# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1
# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
e)可以编译了
在caffe目录下:
#sudo make all -j8
这里的-j8只是为了让make速度便快,应该是线程的问题,还可以直接make all 或者make all -j4,当然应该是make all -j8最快了。
然后
#sudo make pycaffe
#sudo make test -j8
#sudo make runtest -j8
所有都通过了,就表示编译通过!
3.python环境添加caffe
a)在.bashrc中添加一下内容
export PYTHONPATH="/var/source/caffe/python:$PYTHONPATH"
export LD_LIBRARY_PATH="/usr/lib/x86_64-linux-gnu:/usr/lib/x86_64-linux-gnu/hdf5/serial:/usr/local/lib:$LD_LIBRARY_PATH"
b)更新环境
#source $HOME/.bashrc
最后打开python
#python
输入
>>import caffe
没有出现错误!!!安装成功!!