新鲜开源:基于TF2.0的深度强化学习平台
整理 | Jane
出品 | AI科技大本营(公众号id:rgznai100)
近日,Github 一位开发者 danaugrs 开源了一个新项目——Huskarl,一个专注研究和快速原型的深度强化学习框架。
此框架基于 TensorFlow 2.0 构建,使用了 tf.keras API,保证了其简洁性和可读性。Huskarl 可以使多环境的并行计算变得很容易,这将对加速策略学习算法(比如 A2C 和 PPO)非常有用。此外,Huskarl 还可以与 OpenAI Gym 环境无缝结合,并将计划支持多代理环境和 Unity3D 环境。
OpenAI Gym:2016 年 OpenAI 发布的一个可以开发、对比强化学习算法的工具包,提供了各种环境、模拟任务等,任何人都可以在上面训练自己的算法。
Unity3D:一个全面整合的专业游戏引擎,由 Unity Technologies 开发的一款可以让玩家轻松创建三维视频游戏、实时三维动画等类型互动内容的多平台综合型游戏开发工具。
目前,Huskarl 已经支持了
DQN(Deep Q-Learning Network)、
Multi-step DQN、
Double DQN、
A2C(Advantage Actor-Critic)
等算法,还有
DDPG(Deep Deterministic Policy Gradient)、
PPO(Proximal Policy Optimization)、
Curiosity-Driven Exploration 等算法在计划中。
最重要的是,TF 2.0 的 nightly 已经发布,这个开源工具也是基于 TF2.0 开发的,所以大家要先安装一下 tf 2.0 nighty 版本。除此之外,还需要安装以下工具和环境:
这个工具还是新鲜出炉烫手的呢,大家赶紧来尝鲜试一下~
地址:
https://github.com/danaugrs/huskarl
加群交流
关注计算机视觉与机器学习技术,欢迎加入52CV群,扫码添加52CV君拉你入群,
(请务必注明:52CV)
喜欢在QQ交流的童鞋,可以加52CV官方QQ群:702781905。
(不会时时在线,如果没能及时通过验证还请见谅)