连续和离散傅立叶变换总结及推导
连续时间复指数信号
e j w 0 t e^{jw_0t} ejw0t
是否为周期信号?
x
(
t
)
=
x
(
t
+
T
)
x(t) = x(t+T)
x(t)=x(t+T) 现假设
x
(
t
)
=
e
j
w
0
t
x(t) = e^{jw_0t}
x(t)=ejw0t
e
j
w
0
t
=
e
j
w
0
(
t
+
T
)
e^{jw_0t}=e^{jw_0(t+T)}
ejw0t=ejw0(t+T)
当且仅当
w
0
T
=
2
π
→
T
=
2
π
w
0
w_0T=2\pi\rightarrow T=\frac{2\pi}{w_0}
w0T=2π→T=w02π
w 0 = 0 w_0=0 w0=0 无基波周期
w 0 ≠ 0 , T = 2 π w 0 w_0 \neq 0, T=\frac{2\pi}{w_0} w0=0,T=w02π
一组基波
w
0
w_0
w0的整数倍构成的信号:
ϕ
k
(
t
)
=
e
j
k
w
0
t
k
=
0
,
±
1
,
±
2
⋯
\phi_k(t)=e^{jkw_0t}\quad k=0,\pm1,\pm2\cdots
ϕk(t)=ejkw0tk=0,±1,±2⋯
x
(
t
)
x(t)
x(t)信号由若干的复指数信号构成,如
x
(
t
)
=
∑
k
=
−
∞
∞
a
k
e
j
k
w
0
t
x(t) = \sum_{k=-\infty}^{\infty}a_ke^{jkw_0t}
x(t)=k=−∞∑∞akejkw0t
我们可以得到傅立叶系数 FS
a
k
=
1
T
∫
T
x
(
t
)
e
−
j
k
w
0
t
d
t
a_k=\frac{1}{T}\int_Tx(t)e^{-jkw_0t}dt
ak=T1∫Tx(t)e−jkw0tdt
证明过程:
例题:
傅立叶级数的性质
离散时间复指数信号
e j w 0 n e^{jw_0n} ejw0n
上面
n
n
n只能取整数。
e
j
(
w
0
+
2
π
)
n
=
e
j
2
π
n
e
j
w
0
n
=
e
j
w
0
n
e^{j(w_0+2\pi)n} = e^{j2\pi n}e^{jw_0n} = e^{jw_0n}
ej(w0+2π)n=ej2πnejw0n=ejw0n
上述式子表明
w
0
w_0
w0和
w
0
+
2
π
w_0 + 2\pi
w0+2π 一样,因此
w
0
w_0
w0的不断增加并不是和振荡增加对应
在
w
0
=
π
w_0 = \pi
w0=π的时候,有
e
j
π
n
=
(
e
j
π
)
n
=
(
−
1
)
n
e^{j\pi n} =(e^{j\pi})^n=(-1)^n
ejπn=(ejπ)n=(−1)n
此时信号在每一点都符号都发生变化。
是否周期信号?
x
[
n
]
=
x
[
n
+
N
]
x[n]=x[n+N]
x[n]=x[n+N],现
x
[
n
]
=
e
j
w
0
n
x[n]=e^{jw_0n}
x[n]=ejw0n
e
j
w
0
(
n
+
N
)
=
e
j
w
0
n
e^{jw_0(n+N)} = e^{jw_0n}
ejw0(n+N)=ejw0n
则保证
e
j
w
0
N
=
1
e^{jw_0N} = 1
ejw0N=1
则
w
0
N
=
2
π
m
w_0 N = 2\pi m
w0N=2πm
即
N
=
2
π
m
w
0
N=\frac{2\pi m}{w_0}
N=w02πm
要
N
N
N为整数,则
w
0
2
π
=
m
N
\frac{w_0}{2\pi}=\frac{m}{N}
2πw0=Nm为有理数,则该信号为周期。若
m
m
m和
N
N
N无公因子,则周期为
N
N
N
比较:
我们现在构建一组基波周期为
N
N
N的离散信号为
ϕ
k
[
n
]
=
e
j
k
w
0
n
=
e
j
k
2
π
N
n
k
=
0
,
±
1
,
±
2
,
⋯
\phi_k[n] = e^{jkw_0n}=e^{jk\frac{2\pi}{N}n}\quad k=0,\pm1,\pm2,\cdots
ϕk[n]=ejkw0n=ejkN2πnk=0,±1,±2,⋯
x
[
n
]
=
∑
k
a
k
ϕ
k
[
n
]
=
∑
k
a
k
e
j
k
w
0
n
=
∑
k
a
k
e
j
k
2
π
N
n
x[n]=\sum_ka_k\phi_k[n]=\sum_ka_ke^{jkw_0n}=\sum_ka_ke^{jk\frac{2\pi}{N}n}
x[n]=k∑akϕk[n]=k∑akejkw0n=k∑akejkN2πn
由于有
ϕ
k
[
n
]
=
ϕ
k
+
r
N
[
n
]
\phi_k[n]=\phi_{k+rN}[n]
ϕk[n]=ϕk+rN[n],则
k
k
k只在
N
N
N个相继值区间频率是不相同的,
k
k
k可取
0
,
⋯
,
N
−
1
0,\cdots,N-1
0,⋯,N−1,也可以取
3
,
4
,
⋯
,
N
+
2
3,4,\cdots,N+2
3,4,⋯,N+2
则
x
[
n
]
=
∑
k
=
0
N
−
1
a
k
ϕ
k
[
n
]
=
∑
k
=
0
N
−
1
a
k
e
j
k
w
0
n
=
∑
k
=
0
N
−
1
a
k
e
j
k
2
π
N
n
x[n] = \sum_{k=0}^{N-1}a_k\phi_k[n]=\sum_{k=0}^{N-1}a_ke^{jkw_0n}=\sum_{k=0}^{N-1}a_ke^{jk\frac{2\pi}{N}n}
x[n]=k=0∑N−1akϕk[n]=k=0∑N−1akejkw0n=k=0∑N−1akejkN2πn
我们可以计算出离散时间傅立叶系数DFS:
a
k
=
1
N
∑
n
=
0
N
−
1
x
[
n
]
e
−
j
k
w
0
n
−
∞
<
k
<
∞
a_k = \frac{1}{N}\sum_{n=0}^{N-1}x[n]e^{-jkw_0n}\quad -\infty < k < \infty
ak=N1n=0∑N−1x[n]e−jkw0n−∞<k<∞
证明过程:
例题:
离散时间傅立叶级数性质
连续时间傅立叶变换(FT)
非周期信号:
周期矩形波:
a
k
=
1
T
S
a
(
2
k
π
w
0
T
1
)
a_k = \frac{1}{T}Sa(\frac{2k\pi w_0}{T_1})
ak=T1Sa(T12kπw0)
T a k = S a ( 2 π w T 1 ) Ta_k = Sa(\frac{2\pi w}{T_1}) Tak=Sa(T12πw)
我们可以将式(17)看成式(18)的包络函数的样本。
我们先把周期信号表示成
x
~
(
t
)
=
∑
k
=
−
∞
∞
a
k
e
j
k
w
0
t
\tilde{x}(t) = \sum_{k=-\infty}^{\infty}a_ke^{jkw_0t}
x~(t)=k=−∞∑∞akejkw0t
a k = 1 T ∫ − T 2 T 2 x ~ ( t ) e j k w 0 t d t a_k = \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}\tilde{x}(t)e^{jkw_0t}dt ak=T1∫−2T2Tx~(t)ejkw0tdt
我们将其变化到非周期的,在
∣
t
∣
<
T
2
|t|<\frac{T}{2}
∣t∣<2T时,
x
~
(
t
)
=
x
(
t
)
\tilde{x}(t)=x(t)
x~(t)=x(t)
a
k
=
1
T
∫
−
∞
∞
x
(
t
)
e
−
j
k
w
0
t
d
t
a_k=\frac{1}{T}\int_{-\infty}^{\infty}x(t)e^{-jkw_0t}dt
ak=T1∫−∞∞x(t)e−jkw0tdt
则,定义
T
a
k
Ta_k
Tak的包络
X
(
j
w
)
X(jw)
X(jw)为
X
(
j
w
)
=
∫
−
∞
∞
x
(
t
)
e
−
j
w
t
d
t
X(jw)=\int_{-\infty}^{\infty}x(t)e^{-jwt}dt
X(jw)=∫−∞∞x(t)e−jwtdt
a k = 1 T X ( j k w 0 ) a_k=\frac{1}{T}X(jkw_0) ak=T1X(jkw0)
其实周期信号的傅立叶变换也可以得到
x
~
(
t
)
=
∑
k
=
−
∞
∞
1
T
X
(
j
k
w
0
)
e
j
k
w
0
t
\tilde{x}(t)=\sum_{k=-\infty}^{\infty}\frac{1}{T}X(jkw_0)e^{jkw_0t}
x~(t)=k=−∞∑∞T1X(jkw0)ejkw0t
由
2
π
T
=
w
0
\frac{2\pi}{T}=w_0
T2π=w0,则
x
~
(
t
)
=
1
2
π
∑
k
=
−
∞
∞
X
(
j
k
w
0
)
e
j
k
w
0
t
w
0
\tilde{x}(t)=\frac{1}{2\pi}\sum_{k=-\infty}^{\infty}X(jkw_0)e^{jkw_0t}w_0
x~(t)=2π1k=−∞∑∞X(jkw0)ejkw0tw0
由于
T
→
∞
T\rightarrow \infty
T→∞,
w
0
→
0
w_0\rightarrow0
w0→0,
x
~
(
t
)
→
x
(
t
)
\tilde{x}(t)\rightarrow x(t)
x~(t)→x(t),其实就是变成积分
x
(
t
)
=
1
2
π
∫
−
∞
∞
X
(
j
w
)
e
j
w
t
d
w
x(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}X(jw)e^{jwt}dw
x(t)=2π1∫−∞∞X(jw)ejwtdw
X
(
j
w
)
=
∫
−
∞
∞
x
(
t
)
e
−
j
w
t
d
t
X(jw)=\int_{-\infty}^{\infty}x(t)e^{-jwt}dt
X(jw)=∫−∞∞x(t)e−jwtdt
周期信号:
e
j
w
0
t
↔
2
π
δ
(
w
−
w
0
)
e^{jw_0t}\leftrightarrow 2\pi\delta(w-w_0)
ejw0t↔2πδ(w−w0)
周期信号:
X
(
j
w
)
=
∑
k
=
−
∞
∞
2
π
a
k
δ
(
w
−
k
w
0
)
X(jw) = \sum_{k=-\infty}^{\infty}2\pi a_k\delta(w-kw_0)
X(jw)=k=−∞∑∞2πakδ(w−kw0)
逆变换:
x
(
t
)
=
∑
k
=
−
∞
∞
a
k
e
j
k
w
0
t
x(t) = \sum_{k=-\infty}^{\infty}a_ke^{jkw_0t}
x(t)=k=−∞∑∞akejkw0t
傅立叶变换性质
常用傅立叶变换
离散时间傅立叶变换(DTFT)
非周期信号
从离散时间周期信号
x
~
[
n
]
\tilde{x}[n]
x~[n]
x
~
[
n
]
=
∑
k
=
0
N
−
1
a
k
e
j
k
2
π
N
n
\tilde{x}[n]=\sum_{k=0}^{N-1}a_ke^{jk\frac{2\pi}{N}n}
x~[n]=k=0∑N−1akejkN2πn
a
k
=
1
N
∑
n
=
0
N
−
1
x
~
[
n
]
e
−
j
k
2
π
N
n
a_k=\frac{1}{N}\sum_{n=0}^{N-1}\tilde{x}[n]e^{-jk\frac{2\pi}{N}n}
ak=N1n=0∑N−1x~[n]e−jkN2πn
变为非周期,即使
−
N
1
≤
n
≤
N
2
-N_1\leq n \leq N_2
−N1≤n≤N2的区间,使得
x
[
n
]
=
x
~
[
n
]
x[n] = \tilde{x}[n]
x[n]=x~[n],这时候上下限可以变化
a
k
=
1
N
∑
n
=
−
N
1
N
2
x
[
n
]
e
−
j
k
2
π
N
n
=
1
N
∑
n
=
−
∞
∞
x
[
n
]
e
−
j
k
2
π
N
n
a_k=\frac{1}{N}\sum_{n=-N_1}^{N_2}x[n]e^{-jk\frac{2\pi}{N}n}=\frac{1}{N}\sum_{n=-\infty}^{\infty}x[n]e^{-jk\frac{2\pi}{N}n}
ak=N1n=−N1∑N2x[n]e−jkN2πn=N1n=−∞∑∞x[n]e−jkN2πn
则定义为
X
(
e
j
w
)
=
∑
n
=
−
∞
∞
x
[
n
]
e
j
w
n
X(e^{jw}) = \sum_{n=-\infty}^{\infty}x[n]e^{jwn}
X(ejw)=n=−∞∑∞x[n]ejwn
则
a
k
a_k
ak和
X
(
e
j
w
)
X(e^{jw})
X(ejw)之间的关系是:
a
k
=
1
N
X
(
e
j
k
w
0
)
a_k = \frac{1}{N}X(e^{jkw_0})
ak=N1X(ejkw0)
代入
x
~
[
n
]
=
∑
k
=
0
N
−
1
1
N
X
(
e
j
k
w
0
)
e
j
k
w
0
n
\tilde{x}[n] = \sum_{k=0}^{N-1}\frac{1}{N}X(e^{jkw_0})e^{jkw_0n}
x~[n]=k=0∑N−1N1X(ejkw0)ejkw0n
w
0
=
2
π
N
w_0=\frac{2\pi}{N}
w0=N2π即
1
N
=
w
0
2
π
\frac{1}{N}=\frac{w_0}{2\pi}
N1=2πw0,则
x
~
[
n
]
=
1
2
π
∑
n
=
0
N
−
1
X
(
e
j
k
w
0
)
e
j
k
w
0
n
w
0
\tilde{x}[n]=\frac{1}{2\pi}\sum_{n=0}^{N-1}X(e^{jkw_0})e^{jkw_0n}w_0
x~[n]=2π1n=0∑N−1X(ejkw0)ejkw0nw0
x
[
n
]
=
1
2
π
∫
2
π
X
(
e
j
w
)
e
j
w
n
d
w
x[n]=\frac{1}{2\pi}\int_{2\pi}X(e^{jw})e^{jwn}dw
x[n]=2π1∫2πX(ejw)ejwndw
周期信号:
x [ n ] = e j w 0 n x[n] = e^{jw_0n} x[n]=ejw0n
X ( e j w ) = ∑ l = − ∞ ∞ 2 π δ ( w − w 0 − 2 π l ) X(e^{jw})=\sum_{l=-\infty}^{\infty}2\pi\delta(w-w_0-2\pi l) X(ejw)=l=−∞∑∞2πδ(w−w0−2πl)
验证:
周期信号:
x
[
n
]
=
∑
k
=
0
N
−
1
a
k
e
j
k
2
π
N
n
x[n]=\sum_{k=0}^{N-1}a_ke^{jk\frac{2\pi}{N}n}
x[n]=k=0∑N−1akejkN2πn
离散时间傅立叶变换
X
(
e
j
w
)
=
∑
k
=
−
∞
∞
2
π
a
k
δ
(
w
−
2
π
k
N
)
X(e^{jw})=\sum_{k=-\infty}^{\infty}2\pi a_k\delta(w-\frac{2\pi k}{N})
X(ejw)=k=−∞∑∞2πakδ(w−N2πk)
离散时间傅立叶变换性质
采样
连续时间信号的采样
x p ( t ) = x ( t ) p ( t ) x_p(t)=x(t)p(t) xp(t)=x(t)p(t)
p
(
t
)
p(t)
p(t)为冲激串函数,
T
T
T为采样周期,
p
(
t
)
p(t)
p(t)的基波频率
w
s
=
2
π
T
w_s=\frac{2\pi}{T}
ws=T2π,也叫采样频率
p
(
t
)
=
∑
n
=
−
∞
∞
δ
(
t
−
n
T
)
p(t)=\sum_{n=-\infty}^{\infty}\delta(t-nT)
p(t)=n=−∞∑∞δ(t−nT)
x
p
(
t
)
=
∑
n
=
=
−
∞
∞
x
(
n
T
)
δ
(
t
−
n
T
)
x_p(t)=\sum_{n==-\infty}^{\infty}x(nT)\delta(t-nT)
xp(t)=n==−∞∑∞x(nT)δ(t−nT)
时域相乘特性:频域卷积
X
p
(
j
w
)
=
1
2
π
∫
−
∞
∞
X
(
j
w
)
P
(
j
(
w
−
θ
)
)
d
θ
X_p(jw) = \frac{1}{2\pi}\int_{-\infty}^{\infty}X(jw)P(j(w-\theta))d\theta
Xp(jw)=2π1∫−∞∞X(jw)P(j(w−θ))dθ
由于
P
(
j
w
)
=
2
π
T
∑
k
=
−
∞
∞
δ
(
w
−
k
w
s
)
P(jw) = \frac{2\pi}{T}\sum_{k=-\infty}^{\infty}\delta(w-kw_s)
P(jw)=T2πk=−∞∑∞δ(w−kws)
则
X
(
j
w
)
∗
δ
(
w
−
w
0
)
=
X
(
j
(
w
−
w
0
)
)
X(jw)*\delta(w-w_0) =X(j(w-w_0))
X(jw)∗δ(w−w0)=X(j(w−w0))
X
p
(
j
w
)
=
1
T
∑
k
=
−
∞
∞
X
(
j
(
w
−
k
w
s
)
)
X_p(jw)=\frac{1}{T}\sum_{k=-\infty}^{\infty}X(j(w-kw_s))
Xp(jw)=T1k=−∞∑∞X(j(w−kws))
如何从抽样信号恢复出原始信号 内插
欠采样
*
若信号为
x
(
t
)
=
c
o
s
(
w
0
t
+
ϕ
)
x(t) = cos(w_0t+\phi)
x(t)=cos(w0t+ϕ)
x
r
(
t
)
=
c
o
s
[
(
w
s
−
w
0
)
t
−
ϕ
]
x_r(t)=cos[(w_s-w_0)t-\phi]
xr(t)=cos[(ws−w0)t−ϕ]
连续和离散之间联系
现在构建一下连续和离散之间的关系,我们把
x
c
(
t
)
x_c(t)
xc(t)和
y
c
(
t
)
y_c(t)
yc(t)的连续时间傅立叶变换用
X
c
(
j
w
)
X_c(jw)
Xc(jw)和
Y
c
(
j
w
)
Y_c(jw)
Yc(jw)表示,把
x
d
[
n
]
x_d[n]
xd[n]和
y
d
[
n
]
y_d[n]
yd[n]的离散时间傅立叶变换用
X
d
(
e
j
Ω
)
X_d(e^{j\Omega})
Xd(ejΩ)和
Y
d
(
e
j
Ω
)
Y_d(e^{j\Omega})
Yd(ejΩ)表示
x p ( t ) = ∑ n = − ∞ ∞ x c ( n T ) δ ( t − n T ) x_p(t)=\sum_{n=-\infty}^{\infty}x_c(nT)\delta(t-nT) xp(t)=n=−∞∑∞xc(nT)δ(t−nT)
X p ( j w ) = ∑ n = − ∞ ∞ x c ( n T ) e − j w n T X_p(jw)=\sum_{n=-\infty}^{\infty}x_c(nT)e^{-jwnT} Xp(jw)=n=−∞∑∞xc(nT)e−jwnT
由于
x
d
[
n
]
x_d[n]
xd[n]的离散时间傅立叶变换为
X
d
(
e
j
Ω
)
=
∑
n
=
−
∞
∞
x
d
[
n
]
e
−
j
Ω
n
X_d(e^{j\Omega})=\sum_{n=-\infty}^{\infty}x_d[n]e^{-j\Omega n}
Xd(ejΩ)=n=−∞∑∞xd[n]e−jΩn
我们可以得到
X
d
(
e
j
Ω
)
=
X
p
(
j
Ω
T
)
X_d(e^{j\Omega})=X_p(\frac{j\Omega}{T})
Xd(ejΩ)=Xp(TjΩ)
之前我们得到
X
p
(
j
w
)
=
1
T
∑
k
=
−
∞
∞
X
c
(
j
(
w
−
w
s
)
)
X_p(jw)=\frac{1}{T}\sum_{k=-\infty}^{\infty}X_c(j(w-w_s))
Xp(jw)=T1k=−∞∑∞Xc(j(w−ws))
可以变为
X
d
(
e
j
Ω
)
=
1
T
∑
k
=
−
∞
∞
X
c
(
j
(
Ω
−
2
π
k
T
)
)
X_d(e^{j\Omega})=\frac{1}{T}\sum_{k=-\infty}^{\infty}X_c(j(\Omega-\frac{2\pi k}{T}))
Xd(ejΩ)=T1k=−∞∑∞Xc(j(Ω−T2πk))
其实就是个频率坐标转换,将
w
=
Ω
T
w=\Omega T
w=ΩT,我们从下图得到
X
(
e
j
Ω
)
X(e^{j\Omega})
X(ejΩ)是
X
p
(
j
w
)
X_p(jw)
Xp(jw)的重复,且是
Ω
\Omega
Ω的周期函数,周期为
2
π
2\pi
2π.
我们作出如下理解
离散时间信号采样
我们通过对 x [ n ] x[n] x[n]进行采样得到新的序列 x p [ n ] x_p[n] xp[n],在采样周期为 N N N的时候有值,而采样点之间为0
我们根据上面可以写出
x
p
[
n
]
=
x
[
n
]
p
[
n
]
=
∑
k
=
−
∞
∞
x
[
k
N
]
δ
[
n
−
k
N
]
x_p[n]=x[n]p[n]=\sum_{k=-\infty}^{\infty}x[kN]\delta[n-kN]
xp[n]=x[n]p[n]=k=−∞∑∞x[kN]δ[n−kN]
X p ( e j w ) = 1 2 π ∫ 2 π P ( e j θ ) ( X ( e j ( w − θ ) ) d θ X_p(e^{jw})=\frac{1}{2\pi}\int_{2\pi}P(e^{j\theta})(X(e^{j(w-\theta}))d\theta Xp(ejw)=2π1∫2πP(ejθ)(X(ej(w−θ))dθ
P
(
e
j
w
)
=
2
π
N
∑
k
=
−
∞
∞
δ
(
w
−
k
w
s
)
P(e^{jw})=\frac{2\pi}{N}\sum_{k=-\infty}^{\infty}\delta(w-kw_s)
P(ejw)=N2πk=−∞∑∞δ(w−kws)
X
p
(
e
j
w
)
=
1
N
∑
k
=
0
N
−
1
X
(
e
j
(
w
−
k
w
s
)
)
X_p(e^{jw})=\frac{1}{N}\sum_{k=0}^{N-1}X(e^{j(w-kw_s)})
Xp(ejw)=N1k=0∑N−1X(ej(w−kws))
在采样周期的整数倍点上总是相等的
x
r
[
k
N
]
=
x
[
k
N
]
,
k
=
0
,
±
1
,
±
2
,
⋯
x_r[kN]=x[kN], \quad k=0,\pm1,\pm2,\cdots
xr[kN]=x[kN],k=0,±1,±2,⋯
离散时间抽取与内插
x
p
[
n
]
x_p[n]
xp[n]在采样点之间都是0,用一个新的序列
x
b
[
n
]
x_b[n]
xb[n]表示
x
p
[
n
]
x_p[n]
xp[n]每隔
N
N
N点的序列值,这一过程叫抽取,也叫减采样。
x
b
[
n
]
=
x
p
[
n
N
]
x_b[n]=x_p[nN]
xb[n]=xp[nN]
X b ( e j w ) = ∑ k = − ∞ ∞ x b [ k ] e − j w k X_b(e^{jw})=\sum_{k=-\infty}^{\infty}x_b[k]e^{-jwk} Xb(ejw)=k=−∞∑∞xb[k]e−jwk
X b ( e j w ) = ∑ k = − ∞ ∞ x p [ k N ] e − j w k X_b(e^{jw})=\sum_{k=-\infty}^{\infty}x_p[kN]e^{-jwk} Xb(ejw)=k=−∞∑∞xp[kN]e−jwk
令
n
=
k
N
n=kN
n=kN则
X
b
(
e
j
w
)
=
∑
n
为
N
的
整
数
倍
x
p
[
n
]
e
−
j
w
n
N
X_b(e^{jw})=\sum_{n为N的整数倍}x_p[n]e^{-\frac{jwn}{N}}
Xb(ejw)=n为N的整数倍∑xp[n]e−Njwn
由于当
n
n
n不为
N
N
N的整数倍时,
x
p
[
n
]
=
0
x_p[n]=0
xp[n]=0,则
X
b
(
e
j
w
)
=
∑
n
=
−
∞
∞
x
p
[
n
]
e
−
j
w
n
N
=
X
p
(
e
j
w
N
)
X_b(e^{jw})=\sum_{n=-\infty}^{\infty}x_p[n]e^{-\frac{jwn}{N}}=X_p(e^{\frac{jw}{N}})
Xb(ejw)=n=−∞∑∞xp[n]e−Njwn=Xp(eNjw)
总结
1. 周期连续信号傅立叶级数
x ~ ( t ) = ∑ k = − ∞ ∞ a k e j k w 0 t \tilde{x}(t) = \sum_{k=-\infty}^{\infty}a_ke^{jkw_0t} x~(t)=k=−∞∑∞akejkw0t
a k = 1 T ∫ − T 2 T 2 x ~ ( t ) e − j k w 0 t d t a_k = \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}\tilde{x}(t)e^{-jkw_0t}dt ak=T1∫−2T2Tx~(t)e−jkw0tdt
2.非周期连续信号傅立叶变换
x ( t ) = 1 2 π ∫ − ∞ ∞ X ( j w ) e j w t d w x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(jw)e^{jwt}dw x(t)=2π1∫−∞∞X(jw)ejwtdw
X ( j w ) = ∫ − ∞ ∞ x ( t ) e − j w t d t X(jw) = \int_{-\infty}^{\infty}x(t)e^{-jwt}dt X(jw)=∫−∞∞x(t)e−jwtdt
推导:我们先把周期信号表示成
x
~
(
t
)
=
∑
k
=
−
∞
∞
a
k
e
j
k
w
0
t
\tilde{x}(t) = \sum_{k=-\infty}^{\infty}a_ke^{jkw_0t}
x~(t)=k=−∞∑∞akejkw0t
a k = 1 T ∫ − T 2 T 2 x ~ ( t ) e j k w 0 t d t a_k = \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}\tilde{x}(t)e^{jkw_0t}dt ak=T1∫−2T2Tx~(t)ejkw0tdt
我们将其变化到非周期的,在
∣
t
∣
<
T
2
|t|<\frac{T}{2}
∣t∣<2T时,
x
~
(
t
)
=
x
(
t
)
\tilde{x}(t)=x(t)
x~(t)=x(t)
a
k
=
1
T
∫
−
∞
∞
x
(
t
)
e
−
j
k
w
0
t
d
t
a_k=\frac{1}{T}\int_{-\infty}^{\infty}x(t)e^{-jkw_0t}dt
ak=T1∫−∞∞x(t)e−jkw0tdt
则,定义
T
a
k
Ta_k
Tak的包络
X
(
j
w
)
X(jw)
X(jw)为
X
(
j
w
)
=
∫
−
∞
∞
x
(
t
)
e
−
j
w
t
d
t
X(jw)=\int_{-\infty}^{\infty}x(t)e^{-jwt}dt
X(jw)=∫−∞∞x(t)e−jwtdt
a k = 1 T X ( j k w 0 ) a_k=\frac{1}{T}X(jkw_0) ak=T1X(jkw0)
其实周期信号的傅立叶变换也可以得到
x
~
(
t
)
=
∑
k
=
−
∞
∞
1
T
X
(
j
k
w
0
)
e
j
k
w
0
t
\tilde{x}(t)=\sum_{k=-\infty}^{\infty}\frac{1}{T}X(jkw_0)e^{jkw_0t}
x~(t)=k=−∞∑∞T1X(jkw0)ejkw0t
由
2
π
T
=
w
0
\frac{2\pi}{T}=w_0
T2π=w0,则
x
~
(
t
)
=
1
2
π
∑
k
=
−
∞
∞
X
(
j
k
w
0
)
e
j
k
w
0
t
w
0
\tilde{x}(t)=\frac{1}{2\pi}\sum_{k=-\infty}^{\infty}X(jkw_0)e^{jkw_0t}w_0
x~(t)=2π1k=−∞∑∞X(jkw0)ejkw0tw0
由于
T
→
∞
T\rightarrow \infty
T→∞,
w
0
→
0
w_0\rightarrow0
w0→0,
x
~
(
t
)
→
x
(
t
)
\tilde{x}(t)\rightarrow x(t)
x~(t)→x(t),其实就是变成积分
x
(
t
)
=
1
2
π
∫
−
∞
∞
X
(
j
w
)
e
j
w
t
d
w
x(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}X(jw)e^{jwt}dw
x(t)=2π1∫−∞∞X(jw)ejwtdw
X ( j w ) = ∫ − ∞ ∞ x ( t ) e − j w t d t X(jw)=\int_{-\infty}^{\infty}x(t)e^{-jwt}dt X(jw)=∫−∞∞x(t)e−jwtdt
周期连续信号的傅立叶变换
e j k w 0 t ↔ 2 π δ ( w − k w 0 ) e^{jkw_0t} \leftrightarrow 2\pi\delta(w-kw_0) ejkw0t↔2πδ(w−kw0)
x ~ ( t ) = ∑ k = − ∞ ∞ a k e − j k w 0 t \tilde{x}(t)= \sum_{k=-\infty}^{\infty}a_ke^{-jkw_0t} x~(t)=k=−∞∑∞ake−jkw0t
X ( j w ) = ∑ k = − ∞ ∞ 2 π a k δ ( w − k w 0 ) X(jw) = \sum_{k=-\infty}^{\infty}2\pi a_k\delta(w-kw_0) X(jw)=k=−∞∑∞2πakδ(w−kw0)
3.周期离散信号的傅立叶级数
x ~ [ n ] = ∑ k = 0 N − 1 a k e j k w 0 n \tilde{x}[n] =\sum_{k=0}^{N-1}a_ke^{jkw_0n} x~[n]=k=0∑N−1akejkw0n
a k = 1 N ∑ n = 0 N − 1 x ~ [ n ] e − j k w 0 n a_k = \frac{1}{N}\sum_{n=0}^{N-1}\tilde{x}[n]e^{-jkw_0n} ak=N1n=0∑N−1x~[n]e−jkw0n
其中 w 0 = 2 π N w_0 = \frac{2\pi}{N} w0=N2π DFT就是DFS取得主值区间。
4.非周期离散信号的傅立叶变换
x [ n ] = 1 2 π ∫ 2 π X ( e j w ) e j w n d w x[n] = \frac{1}{2\pi}\int_{2\pi}X(e^{jw})e^{jwn}dw x[n]=2π1∫2πX(ejw)ejwndw
X ( e j w ) = ∑ n = − ∞ ∞ x [ n ] e − j w n X(e^{jw})=\sum_{n=-\infty}^{\infty}x[n]e^{-jwn} X(ejw)=n=−∞∑∞x[n]e−jwn
推导过程:从离散时间周期信号
x
~
[
n
]
\tilde{x}[n]
x~[n]
x
~
[
n
]
=
∑
k
=
0
N
−
1
a
k
e
j
k
2
π
N
n
\tilde{x}[n]=\sum_{k=0}^{N-1}a_ke^{jk\frac{2\pi}{N}n}
x~[n]=k=0∑N−1akejkN2πn
a
k
=
1
N
∑
n
=
0
N
−
1
x
~
[
n
]
e
−
j
k
2
π
N
n
a_k=\frac{1}{N}\sum_{n=0}^{N-1}\tilde{x}[n]e^{-jk\frac{2\pi}{N}n}
ak=N1n=0∑N−1x~[n]e−jkN2πn
变为非周期,即使
−
N
1
≤
n
≤
N
2
-N_1\leq n \leq N_2
−N1≤n≤N2的区间,使得
x
[
n
]
=
x
~
[
n
]
x[n] = \tilde{x}[n]
x[n]=x~[n],这时候上下限可以变化
a
k
=
1
N
∑
n
=
−
N
1
N
2
x
[
n
]
e
−
j
k
2
π
N
n
=
1
N
∑
n
=
−
∞
∞
x
[
n
]
e
−
j
k
2
π
N
n
a_k=\frac{1}{N}\sum_{n=-N_1}^{N_2}x[n]e^{-jk\frac{2\pi}{N}n}=\frac{1}{N}\sum_{n=-\infty}^{\infty}x[n]e^{-jk\frac{2\pi}{N}n}
ak=N1n=−N1∑N2x[n]e−jkN2πn=N1n=−∞∑∞x[n]e−jkN2πn
则定义为
X
(
e
j
w
)
=
∑
n
=
−
∞
∞
x
[
n
]
e
j
w
n
X(e^{jw}) = \sum_{n=-\infty}^{\infty}x[n]e^{jwn}
X(ejw)=n=−∞∑∞x[n]ejwn
则
a
k
a_k
ak和
X
(
e
j
w
)
X(e^{jw})
X(ejw)之间的关系是:
a
k
=
1
N
X
(
e
j
k
w
0
)
a_k = \frac{1}{N}X(e^{jkw_0})
ak=N1X(ejkw0)
代入
x
~
[
n
]
=
∑
k
=
0
N
−
1
1
N
X
(
e
j
k
w
0
)
e
j
k
w
0
n
\tilde{x}[n] = \sum_{k=0}^{N-1}\frac{1}{N}X(e^{jkw_0})e^{jkw_0n}
x~[n]=k=0∑N−1N1X(ejkw0)ejkw0n
w
0
=
2
π
N
w_0=\frac{2\pi}{N}
w0=N2π即
1
N
=
w
0
2
π
\frac{1}{N}=\frac{w_0}{2\pi}
N1=2πw0,则
x
~
[
n
]
=
1
2
π
∑
n
=
0
N
−
1
X
(
e
j
k
w
0
)
e
j
k
w
0
n
w
0
\tilde{x}[n]=\frac{1}{2\pi}\sum_{n=0}^{N-1}X(e^{jkw_0})e^{jkw_0n}w_0
x~[n]=2π1n=0∑N−1X(ejkw0)ejkw0nw0
x
[
n
]
=
1
2
π
∫
2
π
X
(
e
j
w
)
e
j
w
n
d
w
x[n]=\frac{1}{2\pi}\int_{2\pi}X(e^{jw})e^{jwn}dw
x[n]=2π1∫2πX(ejw)ejwndw
周期离散信号的傅立叶变换
e j k w 0 n ↔ ∑ l = − ∞ ∞ 2 π δ ( w − k w 0 − 2 π l ) e^{jkw_0n} \leftrightarrow \sum_{l=-\infty}^{\infty}2\pi\delta(w-kw_0-2\pi l) ejkw0n↔l=−∞∑∞2πδ(w−kw0−2πl)
x ~ [ n ] = ∑ k = 0 N − 1 a k e j k w 0 n \tilde{x}[n] = \sum_{k=0}^{N-1}a_ke^{jkw_0n} x~[n]=k=0∑N−1akejkw0n
x ~ [ n ] = ∑ k = − ∞ ∞ 2 π a k δ ( w − k w 0 ) \tilde{x}[n]=\sum_{k=-\infty}^{\infty}2\pi a_k\delta(w-kw_0) x~[n]=k=−∞∑∞2πakδ(w−kw0)
其中 w 0 = 2 π N w_0=\frac{2\pi}{N} w0=N2π