用平方映射理解tanh

Tanh的表达式

用平方映射理解tanh

对tanh求导

用平方映射理解tanh

对其进行反向传导就是 d*(1+tanhx)(1-tanhx)

而平方映射为μx(1-x)

d对应μ

1+tanhx 对应 x 只是多了一个1

Tanhx(n+1)=d*(1+tanhx(n))(1-tanhx(n))

先写出结论


d
d<0.86 趋近于一个大于零的解
<0.86d<1.19 周期解
1.19<d 无规则混沌解

当d<0.86的时候有一个解就是X=d(1-x^2)这个方程的解图像形如


用平方映射理解tanh


这时当d=0.86时的图像,图像最终收敛于0.575333034

也就是说当残差小于0.86是对tanh进行反向传导时只要运行次数足够多,比如对0.86这种情况只要迭代次数大于401次就会得到一个确定的值。这样的网络很显然是稳定的。


当d>0.86是图像会分岔,出现倍频周期解



用平方映射理解tanh


这是d=0.87时的图像 有一大一小两个解


用平方映射理解tanh


这是d=1.1 时 可以看到两大两小4个解


用平方映射理解tanh


这是d=1.18可以看到两大两小4个解更加明显,也就是说tanh函数在反向传导时如果d>0.87即便是同样的输入、迭代同样的次数,两次得到的网络也可能不同,或者对同样的输入随着迭代次数的增加输出也不见得稳定。

当d>1.2是图像变的没有规律

比如当d=1.4时


用平方映射理解tanh


可以想见如果tanh反向传导的残差大于1.4这个网络的性能是很难稳定的,而tanh的输出是-1到1,1.4的残差是可能的。当d更大时输出变化范围更大,更不稳定

对比sigmoid函数


d dx(1-x)
d<1 趋近于0
1<d<2.8 趋近于一个大于零的解
2.8<d<3.5 周期波动
d>3.5 混沌


具体迭代数据


* d(1+f)(1-f)
d 0.1 0.8 -0.86 0.87 1
f 0.1 0.1 0.1 0.1 0.1
1 0.099 0.792 -0.8514 0.8613 0.99
2 0.0990199 0.2981888 -0.23660151 0.22460121 0.0199
3 0.099019506 0.728866752 -0.81185696 0.826112238 0.99960399
4 0.099019514 0.375002607 -0.29316391 0.276258556 0.000791863
5 0.099019514 0.687498436 -0.78608723 0.803602653 0.999999373
6 0.099019514 0.42187672 -0.3285775 0.308173815 1.25409E-06
7 0.099019514 0.657616026 -0.76715167 0.787375143 1
8 0.099019514 0.45403293 -0.35387135 0.330635135 3.14548E-12
9 0.099019514 0.635083279 -0.75230656 0.774891955 1
10 0.099019514 0.477335383 -0.37326997 0.347601939 0
11 0.099019514 0.617720746 -0.7401758 0.764880416 1
12 0.099019514 0.494736864 -0.38884022 0.361013416 0
13 0.099019514 0.604188348 -0.72997082 0.756612303 1
14 0.099019514 0.507965152 -0.40174263 0.371957906 0
15 0.099019514 0.593577124 -0.72119846 0.749633165 1
16 0.099019514 0.518132959 -0.4126906 0.381103603 0
17 0.099019514 0.58523059 -0.71353037 0.743641238 1
18 0.099019514 0.526004126 -0.422152 0.388888007 0
19 0.099019514 0.578655728 -0.70673741 0.738426523 1
20 0.099019514 0.532126039 -0.43044912 0.395611855 0
21 0.099019514 0.573473503 -0.70065366 0.733837396 1
22 0.099019514 0.536902513 -0.43781263 0.401489928 0
23 0.099019514 0.569388553 -0.69515529 0.729761079 1
24 0.099019514 0.54063734 -0.44441285 0.406680428 0
25 0.099019514 0.566169013 -0.69014761 0.726111596 1


d(1+f)(1-f)
d 1.1 1.18 1.19 1.2 1.6 1.9
f 0.1 0.1 0.1 0.1 0.1 5
1 1.089 1.1682 1.1781 1.188 1.584 -45.6
2 -0.2045131 -0.43033566 -0.46162434 -0.4936128 -2.4144896 -3948.884
3 1.053991831 0.961477236 0.936414537 0.907615684 -7.72761605 -29627999.3
4 -0.12198866 0.089162599 0.146522099 0.211480523 -93.9456796 -1.6679E+15
5 1.083630644 1.170619037 1.164452217 1.146331186 -14119.6651 -5.2853E+30
6 -0.19168091 -0.43701174 -0.42357927 -0.37689023 -318983908 -5.3075E+61
7 1.059584272 0.954644476 0.976490918 1.02954451 -1.628E+17 -5.352E+123
8 -0.13499071 0.10461163 0.055293929 -0.07195428 -4.2407E+34 -5.443E+247
9 1.079955259 1.16708656 1.186361672 1.193787098 -2.8773E+69 #NUM!
10 -0.1829337 -0.42726743 -0.48487028 -0.51015316 -1.325E+139 #NUM!
11 1.063188789 0.964582205 0.910231966 0.887692499 -2.808E+278 #NUM!
12 -0.14340744 0.08210578 0.204058544 0.254402432 #NUM! #NUM!
13 1.077377736 1.172045196 1.140448532 1.122335283 #NUM! #NUM!
14 -0.17681707 -0.44095413 -0.3577412 -0.31156379 #NUM! #NUM!
15 1.065609298 0.950560156 1.037705272 1.083513609 #NUM! #NUM!
16 -0.14907549 0.113793761 -0.09143036 -0.20880209 #NUM! #NUM!
17 1.075554147 1.164720156 1.180052183 1.147682025 #NUM! #NUM!
18 -0.1724984 -0.42075619 -0.46710255 -0.38060884 #NUM! #NUM!
19 1.067268734 0.97109779 0.930360092 1.026164296 #NUM! #NUM!
20 -0.15296881 0.067223518 0.159971818 -0.06361579 #NUM! #NUM!
21 1.074260599 1.174667578 1.159546731 1.195143637 #NUM! #NUM!
22 -0.16943942 -0.44821583 -0.41001286 -0.51404197 #NUM! #NUM!
23 1.068419312 0.942941037 0.989948452 0.882913018 #NUM! #NUM!
24 -0.15567181 0.130817396 0.023802453 0.264557524 #NUM! #NUM!
25 1.073342917 1.159806435 1.189325797 1.11601118 #NUM! #NUM!





* d*f*(1-f)
d 0.1 0.2 0.9 1 1.1 1.2
f 0.1 0.1 0.1 0.1 0.1 0.1
1 0.009 0.018 0.081 0.09 0.099 0.108
2 0.000908 0.003665 0.066995 0.0819 0.098119 0.115603
3 9.09E-05 0.000736 0.056256 0.075192 0.097341 0.122687
4 9.09E-06 0.000147 0.047782 0.069538 0.096652 0.129162
5 9.09E-07 2.95E-05 0.040949 0.064703 0.096041 0.134975
6 9.09E-08 5.89E-06 0.035345 0.060516 0.095499 0.140108
7 9.09E-09 1.18E-06 0.030686 0.056854 0.095017 0.144573
8 9.09E-10 2.36E-07 0.02677 0.053622 0.094588 0.148406
9 9.09E-11 4.71E-08 0.023448 0.050746 0.094205 0.151658
10 9.09E-12 9.42E-09 0.020608 0.048171 0.093863 0.15439
11 9.09E-13 1.88E-09 0.018165 0.045851 0.093558 0.156664
12 9.09E-14 3.77E-10 0.016052 0.043749 0.093286 0.158545
13 9.09E-15 7.54E-11 0.014215 0.041835 0.093042 0.16009
14 9.09E-16 1.51E-11 0.012611 0.040084 0.092824 0.161353
15 9.09E-17 3.02E-12 0.011207 0.038478 0.092628 0.162382
16 9.09E-18 6.03E-13 0.009973 0.036997 0.092453 0.163217
17 9.09E-19 1.21E-13 0.008887 0.035628 0.092296 0.163893
18 9.09E-20 2.41E-14 0.007927 0.034359 0.092155 0.164438
19 9.09E-21 4.83E-15 0.007078 0.033178 0.092029 0.164878
20 9.09E-22 9.65E-16 0.006325 0.032078 0.091915 0.165232
21 9.09E-23 1.93E-16 0.005656 0.031049 0.091814 0.165516
22 9.09E-24 3.86E-17 0.005062 0.030085 0.091722 0.165745
23 9.09E-25 7.72E-18 0.004533 0.02918 0.09164 0.165928
24 9.09E-26 1.54E-18 0.004061 0.028328 0.091567 0.166075
25 9.09E-27 3.09E-19 0.00364 0.027526 0.0915 0.166193



* d*f*(1-f)
d 2 3 3.5 3.6 3.8 4
f 0.1 0.9 0.1 0.1 0.1 0.1
1 0.18 0.27 0.315 0.324 0.342 0.36
2 0.2952 0.5913 0.755213 0.788486 0.855137 0.9216
3 0.416114 0.724993 0.647033 0.600392 0.470736 0.289014
4 0.485926 0.598135 0.799335 0.863717 0.946746 0.821939
5 0.499604 0.721109 0.561396 0.423756 0.191589 0.585421
6 0.5 0.603333 0.861807 0.879072 0.588555 0.970813
7 0.5 0.717967 0.416835 0.382695 0.9202 0.113339
8 0.5 0.607471 0.850793 0.850462 0.27904 0.401974
9 0.5 0.71535 0.444306 0.457835 0.764472 0.961563
10 0.5 0.610873 0.864144 0.893599 0.684208 0.147837
11 0.5 0.713121 0.410898 0.342286 0.821056 0.503924
12 0.5 0.613738 0.847213 0.810455 0.558307 0.999938
13 0.5 0.711191 0.453051 0.553025 0.937081 0.000246
14 0.5 0.616195 0.867285 0.889878 0.224049 0.000985
15 0.5 0.709496 0.402856 0.352782 0.660634 0.003936
16 0.5 0.618334 0.84197 0.821977 0.851947 0.015682
17 0.5 0.707991 0.465697 0.526792 0.479305 0.061745
18 0.5 0.620219 0.870882 0.897416 0.948373 0.23173
19 0.5 0.706642 0.393564 0.331418 0.186056 0.712124
20 0.5 0.621897 0.83535 0.797689 0.575468 0.820014
21 0.5 0.705423 0.481392 0.580973 0.928357 0.590364
22 0.5 0.623404 0.873788 0.876396 0.252738 0.967337
23 0.5 0.704315 0.385989 0.389974 0.717674 0.126384
24 0.5 0.624767 0.829505 0.856419 0.769948 0.441645
25 0.5 0.7033 0.494993 0.442675 0.673086 0.986379