第十二周作业——高级编程作业
11 Matplotlib
Exercise 11.1:Plotting a function
plot the function f(x) = sin2(x-2)e^(-x^2)
over the interval [0; 2]. Add proper axis labels, a title, etc
import numpy as np
import matplotlib . pyplot as plt
fig, ax = plt.subplots()
x = np. linspace (0 , 2, 1000)
y = np.power(np.sin(x-2), 2) * np.exp(-x*x)
plt . plot (x , y)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_title('title')
plt . show()
Exercise 11.2: Data
Create a data matrix X with 20 observations of 10 variables. Generate a vector b with parameters Then generate the response vector y = Xb+z where z is a vector with standard normally distributed variables. Now (by only using y and X), find an estimator for b, by solving
^b = arg min
Plot the true parameters b and estimated parameters ˆb. See Figure 1 for an example plot.
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import minimize
def func(b0, X, y):
return np.linalg.norm(np.dot(X, b0) - y, ord=2)
X = np.random.normal(size = (20,10))
b = np.random.normal(size = (10, 1))
z = np.random.normal(size = (20,1))
y = np.dot(X, b) + z
b0 = np.zeros((10,1))
b1 = p.x
p = minimize(func, b0, args=(X,y))
x1 = np.linspace(0, 9, 10)
fig = plt.figure()
p1 = plt.scatter(x1, b, c = 'c')
p2 = plt.scatter(x1, b1, c = 'm')
plt.xlabel('index')
plt.ylabel('value')
plt.legend([p1, p2], ['Ture coeffiients', 'Estimated coefficients'])
plt.show()
Exercise 11.3: Histogram and density estimation
Generate a vector z of 10000 observations from your favorite exotic distribution. Then make a plot that shows a histogram of z (with 25 bins), along with an estimate for the density, using a Gaussian kernel density estimator (see scipy.stats). See Figure 2 for an example plot.
x = np.linspace(-10,30,10000)
plot(x,stats.norm.pdf(x=x,loc=10,scale=5),color='red')
hist(stats.norm.rvs(loc=10,scale=5,size=1000),bins-25,normed=true,color='blue',alpha=0.6)
show()