Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

摘要上:

1.CRF的传统方法defined over pixels or image regions,author defined on the complete set of pixels in an image.

2.但是这样的定义making traditional inference algorithms impractical,所以作者主要贡献就是一个高效的估计推理算法。

该论文代码见1.http://www.philkr.net/code/


Krähenbühl P, Koltun V. Efficient inference in fully connected crfs with gaussian edge potentials[C]//Advances in neural information processing systems. 2011: 109-117.

目录:

1.介绍

2.The Fully Connected CRF Model 全连接CRFs模型

3. Efficient Inference in Fully Connected CRFs

   3.1 Mean Field Approximation

   3.2 Efficient Message Passing Using High-Dimensional Filtering

4 Learning

5 Implementation

6 Evaluation

We evaluate the presented algorithm on two standard benchmarks for multi-class image segmen-
tation and labeling. The first is the MSRC-21 dataset, which consists of 591 color images of size 320×213 with corresponding ground truth labelings of 21 object classes [19]. The second is the PASCAL VOC 2010 dataset, which contains 1928 color images of size approximately 500×400,with a total of 20 object classes and one background class [3]. 


其中MSRC=Microsoft Research in Cambridge,MSRC数据集来源于

2.《TextonBoost: Joint Appearance, Shape and Context Modeling for Mulit-Class Object Recognition and Segmentation》

Shotton J, Winn J, Rother C, et al. Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation[C]//European conference on computer vision. Springer, Berlin, Heidelberg, 2006: 1-15.

同时该论文提出来textonboost算法。

注:DenseCRF作者将MSRC数据集中的不准确的gt重新标注了96张。

为什么要提到2?

1.使用了该数据集

2.

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

因为一元势函数就是在该算法的基础之上所获得的。