Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials
摘要上:
1.CRF的传统方法defined over pixels or image regions,author defined on the complete set of pixels in an image.
2.但是这样的定义making traditional inference algorithms impractical,所以作者主要贡献就是一个高效的估计推理算法。
该论文代码见1.http://www.philkr.net/code/
目录:
1.介绍
2.The Fully Connected CRF Model 全连接CRFs模型
3. Efficient Inference in Fully Connected CRFs
3.1 Mean Field Approximation
3.2 Efficient Message Passing Using High-Dimensional Filtering
4 Learning
5 Implementation
6 Evaluation
We evaluate the presented algorithm on two standard benchmarks for multi-class image segmen-
tation and labeling. The first is the MSRC-21 dataset, which consists of 591 color images of size 320×213 with corresponding ground truth labelings of 21 object classes [19]. The second is the PASCAL VOC 2010 dataset, which contains 1928 color images of size approximately 500×400,with a total of 20 object classes and one background class [3].
其中MSRC=Microsoft Research in Cambridge,MSRC数据集来源于
2.《TextonBoost: Joint Appearance, Shape and Context Modeling for Mulit-Class Object Recognition and Segmentation》
Shotton J, Winn J, Rother C, et al. Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation[C]//European conference on computer vision. Springer, Berlin, Heidelberg, 2006: 1-15.
同时该论文提出来textonboost算法。
注:DenseCRF作者将MSRC数据集中的不准确的gt重新标注了96张。
为什么要提到2?
1.使用了该数据集
2.
因为一元势函数就是在该算法的基础之上所获得的。