GANimation: Anatomically-aware Facial Animation from a Single Image(ECCV18)

3 Problem Formulation

定义输入图像IyrRH×W×3\mathbf{I}_{\mathbf{y}_r}\in\mathbb{R}^{H\times W\times3}yr=(y1,,yN)T\mathbf{y}_r=\left ( y_1,\cdots,y_N \right )^T表示NN个Action Unis,每一个AU yny_n是归一化到[0,1][0, 1]的AU intensity

我们的目标是学习一个mapping M\mathcal{M},给定target AU yg\mathbf{y}_g,将输入图像Iyr\mathbf{I}_{\mathbf{y}_r}变换为Iyg\mathbf{I}_{\mathbf{y}_g},即M:(Iyr,yg)Iyg\mathcal{M}: \left ( \mathbf{I}_{\mathbf{y}_r},\mathbf{y}_g \right )\rightarrow\mathbf{I}_{\mathbf{y}_g}

训练数据集包含MM个样本,每一个样本是一个triplet,记作{Iyrm,yrm,ygm}m=1M\left \{ \mathbf{I}_{\mathbf{y}_r}^m, \mathbf{y}_r^m, \mathbf{y}_g^m \right \}_{m=1}^M,由于我们不知道Iyg\mathbf{I}_{\mathbf{y}_g},因此是无监督学习

4 Our Approach

GANimation: Anatomically-aware Facial Animation from a Single Image(ECCV18)
如Figure 2所示,整个框架主要包含2个网络

正向(Iyr,yg)Iyg\left ( \mathbf{I}_{\mathbf{y}_r},\mathbf{y}_g \right )\rightarrow\mathbf{I}_{\mathbf{y}_g}
反向(Iyg,yr)I^yr\left ( \mathbf{I}_{\mathbf{y}_g},\mathbf{y}_r \right )\rightarrow\mathbf{\hat{I}}_{\mathbf{y}_r}

4.2 Learning the Model

Image Adversarial Loss

WGAN将原版GAN中的JS散度替换为Earth Mover Distance
为了maintain a Lipschitz constraint,WGAN-GP增加了一项gradient penalty,computed as the norm of the gradients with respect to the critic input

critic loss LI(G,DI,Iyo,yf)\mathcal{L}_I\left ( G, D_I, \mathbf{I}_{\mathbf{y}_o}, \mathbf{y}_f \right )定义如下
EIyoPo[DI(G(Iyoyf))]E \mathbb{E}_{\mathbf{I}_{\mathbf{y}_o}\sim\mathbb{P}_o}\left [ D_I\left ( G\left ( \mathbf{I}_{\mathbf{y}_o}|\mathbf{y}_f \right ) \right ) \right ] - \mathbb{E}

Attention Loss