判断点是否在矩形内

如图判断点PP是否在矩形P1P2P3P4P_{1}P_{2}P_{3}P_{4}内部?
判断点是否在矩形内
从上图可以看出:
P{P} 位于矩形内部 \Leftrightarrow {PP1P490PP1P290PP3P490PP3P290\left\{\begin{aligned} \measuredangle PP_{1}P_{4}\leq90\\ \measuredangle PP_{1}P_{2}\leq90\\ \measuredangle PP_{3}P_{4}\leq90 \\ \measuredangle PP_{3}P_{2}\leq90 \end{aligned}\right. \Leftrightarrow {P1PP1P40P1PP1P20P3PP3P40P3PP3P20\left\{\begin{aligned} \vec{P_{1}P} \cdot \vec{P_{1}P_{4}} \geq 0\\ \vec{P_{1}P} \cdot \vec{P_{1}P_{2}} \geq 0\\ \vec{P_{3}P} \cdot \vec{P_{3}P_{4}} \geq 0\\ \vec{P_{3}P} \cdot \vec{P_{3}P_{2}} \geq 0\\ \end{aligned}\right.
所以,点PP在矩形P1P2P3P4P_{1}P_{2}P_{3}P_{4}内部的条件为:

P1PP1P40\vec{P_{1}P} \cdot \vec{P_{1}P_{4}} \geq 0
&& P1PP1P20\vec{P_{1}P} \cdot \vec{P_{1}P_{2}} \geq 0 && P3PP3P40\vec{P_{3}P} \cdot \vec{P_{3}P_{4}} \geq 0 && P3PP3P20\vec{P_{3}P} \cdot \vec{P_{3}P_{2}} \geq 0