MULTI-SCALE CONTEXT AGGREGATION BY DILATED CONVOLUTIONS

本文要点有三:

  • 提出dilated convolution(空洞卷积,扩张卷积)most important

MULTI-SCALE CONTEXT AGGREGATION BY DILATED CONVOLUTIONS

网络使用扩张卷积,增大感受野,感受野随层数指数级增加;同时每一层通过padding操作,保证卷积后的图像大小不发生改变


  • FRONT END module

利用dilated convolution修改VGG16,能够完成初步的语义分割任务

MULTI-SCALE CONTEXT AGGREGATION BY DILATED CONVOLUTIONS


  • context module

该模块input是FRONT END module的输出,模块输入输出的通道数一致;对FRONT END module分割的图像进一步细化

7层,使用dilated convolution,dilations分别为1,1,2,4,8,16,1

各层参数按特定规则初始化

MULTI-SCALE CONTEXT AGGREGATION BY DILATED CONVOLUTIONS