CNN (tensorflow,mnist)-实例4
本实例是使用tensorflow构建的CNN两层网络,用的数据集是mnist数据集。此数据集尾部有分享链接,如果代码中通过tensorflow下载失败,可以通过此链接下载好
# cnn.py文件
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import input_data
mnist = input_data.read_data_sets('data/', one_hot=True) # one_hot=True表示编码格式为0/1编码
trainimg = mnist.train.images
trainlabel = mnist.train.labels
testimg = mnist.test.images
testlabel = mnist.test.labels
print ("MNIST ready")
n_input = 784 #输入的图片大小28x28x1
n_output = 10 #10分类
#[3(filter的h), 3(filter的w), 1(深度,因为是灰度图,所以是1 ), 64(想要得到64张特征图,即输出的深度)] 。'wc1'和'wc2'表示卷积层参数,'wd1'和'wd2'表示全连接层参数
weights = {
'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64], stddev=0.1)),
'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128], stddev=0.1)),
'wd1': tf.Variable(tf.random_normal([7 * 7 * 128, 1024], stddev=0.1)),
'wd2': tf.Variable(tf.random_normal([1024, n_output], stddev=0.1))
}
biases = {
'bc1': tf.Variable(tf.random_normal([64], stddev=0.1)),
'bc2': tf.Variable(tf.random_normal([128], stddev=0.1)),
'bd1': tf.Variable(tf.random_normal([1024], stddev=0.1)),
'bd2': tf.Variable(tf.random_normal([n_output], stddev=0.1))
}
#前向传播
def conv_basic(_input, _w, _b, _keepratio):
# INPUT 将_input转化成tensorflow支持的格式
_input_r = tf.reshape(_input, shape=[-1, 28, 28, 1])
# CONV LAYER 1,padding='SAME'表示滑动过程中不够就自动填0
_conv1 = tf.nn.conv2d(_input_r, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME')
#_mean, _var = tf.nn.moments(_conv1, [0, 1, 2])
#_conv1 = tf.nn.batch_normalization(_conv1, _mean, _var, 0, 1, 0.0001)
_conv1 = tf.nn.relu(tf.nn.bias_add(_conv1, _b['bc1']))
_pool1 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
_pool_dr1 = tf.nn.dropout(_pool1, _keepratio) #随机删除一些神经元节点
# CONV LAYER 2
_conv2 = tf.nn.conv2d(_pool_dr1, _w['wc2'], strides=[1, 1, 1, 1], padding='SAME')
#_mean, _var = tf.nn.moments(_conv2, [0, 1, 2])
#_conv2 = tf.nn.batch_normalization(_conv2, _mean, _var, 0, 1, 0.0001)
_conv2 = tf.nn.relu(tf.nn.bias_add(_conv2, _b['bc2']))
_pool2 = tf.nn.max_pool(_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
_pool_dr2 = tf.nn.dropout(_pool2, _keepratio)
# VECTORIZE。_dense1将_pool_dr2转化成全连接层的输入大小格式
_dense1 = tf.reshape(_pool_dr2, [-1, _w['wd1'].get_shape().as_list()[0]])
# FULLY CONNECTED LAYER 1
_fc1 = tf.nn.relu(tf.add(tf.matmul(_dense1, _w['wd1']), _b['bd1']))
_fc_dr1 = tf.nn.dropout(_fc1, _keepratio)
# FULLY CONNECTED LAYER 2
_out = tf.add(tf.matmul(_fc_dr1, _w['wd2']), _b['bd2'])
# RETURN
out = { 'input_r': _input_r, 'conv1': _conv1, 'pool1': _pool1, 'pool1_dr1': _pool_dr1,'conv2': _conv2, 'pool2': _pool2, 'pool_dr2': _pool_dr2, 'dense1': _dense1,
'fc1': _fc1, 'fc_dr1': _fc_dr1, 'out': _out
}
return out
print ("CNN READY")
a = tf.Variable(tf.random_normal([3, 3, 1, 64], stddev=0.1))
print (a)
a = tf.Print(a, [a], "a: ")
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
#sess.run(a)
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_output])
keepratio = tf.placeholder(tf.float32)
# FUNCTIONS
#_pred进行一次前向传播的结果
_pred = conv_basic(x, weights, biases, keepratio)['out']
# cost是损失值,softmax_cross_entropy_with_logits是交叉熵函数,reduce_mean求一个平均的loss
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=_pred,labels=y))
# AdamOptimizer是一种优化策略,比梯度下降要好
optm = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
_corr = tf.equal(tf.argmax(_pred,1), tf.argmax(y,1)) #准确率
accr = tf.reduce_mean(tf.cast(_corr, tf.float32)) #将_corr转化为float类型
init = tf.global_variables_initializer() #全局初始化后才能run
# SAVER
print ("GRAPH READY")
sess = tf.Session() #开辟计算区域
sess.run(init)
training_epochs = 15 #迭代次数,每迭代一次打印一次
batch_size = 16
display_step = 1
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# total_batch = 10 #为了省时间可以设置为10
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# Fit training using batch data。不断运行优化器
sess.run(optm, feed_dict={x: batch_xs, y: batch_ys, keepratio:0.7})
# Compute average loss
avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keepratio:1.})/total_batch
# Display logs per epoch step
if epoch % display_step == 0:
print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
train_acc = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys, keepratio:1.})
print (" Training accuracy: %.3f" % (train_acc))
test_acc = sess.run(accr, feed_dict={x: testimg, y: testlabel, keepratio:1.})
print (" Test accuracy: %.3f" % (test_acc))
print ("OPTIMIZATION FINISHED")
input_data.py文件
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tempfile
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
结果截图:训练精度为100%,测试精度接近100%
文件目录:
数据集分享下载链接:链接:https://pan.baidu.com/s/1-gSCEWPT17xHoObzV7deqg
提取码:iz3h