AlexNet 结构详解

AlexNet 结构详解

Alex 参加ImageNet时由于计算资源有限,所以用两块GUP进行并行训练,在这里将两个并行网络合并成一个。

Input: 227 * 227 * 3 images  虽然Alex 在论文中指出其input是224*224*3,但是这样的输入与其输出并不符合

[55*55*96] CONV1: 96 11 * 11 filters at stride 4,pad 0

[27*27*96] MAX POOL1:3*3 filters at stride 2

[27*27*96] NORM1: Normalization layer

[27*27*256] CONV2 SAME: 256 5*5 filters at stride 1,pad 2

[13*13*256] MAX POOL2: 3 * 3 filters at stride 2

[13*13*256] NORM2

[13*13*384] CONV3 SAME: 384 3*3 filters at stride 1, pad 1

[13*13*384] CONV4 SAME: 384 3*3 filters at stride 1, pad 1

[13*13*256] CONV5 SAME: 256 3*3 filters at stride 1, pad 1

[6*6*256] MAX POOL3: 3*3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

 

Details:

- first use of ReLU

- used Norm layers

- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus

- L2 weight decay 5e-4

- 7 CNN ensemble: 18.2% -> 15.4%