Faster R-CNN

 

1.R-CNN、Fast R-CNN、Faster R-CNN三者关系

Faster R-CNN

Faster R-CNN

 

2.Faster R-CNN改进

目标检测的四个基本步骤(候选区域生成,特征提取,分类,位置精修)被统一到一个深度网络框架之内。faster RCNN可以简单地看做“区域生成网络RPN+fast RCNN“的系统,用RPN代替fast RCNN中的Selective Search方法。

1. 如何设计区域生成网络;
2. 如何训练区域生成网络;
3. 如何让区域生成网络和Fast RCNN网络共享特征提取网络。

在整个Faster R-CNN算法中,有三种尺度:
1. 原图尺度:原始输入的大小。不受任何限制,不影响性能。

2. 归一化尺度:输入特征提取网络的大小,在测试时设置,源码中opts.test_scale=600。anchor在这个尺度上设定。这个参数和anchor的相对大小决定了想要检测的目标范围。
3. 网络输入尺度:输入特征检测网络的大小,在训练时设置,源码中为224*224

Faster R-CNN

Faster R-CNN

3.RPN核心思想

RPN的核心思想是使用CNN卷积神经网络直接产生Region Proposal,使用的方法本质上就是滑动窗口(只需在最后的卷积层上滑动一遍),因为anchor机制和边框回归可以得到多尺度多长宽比的Region Proposal。

RPN网络也是全卷积网络(FCN,fully-convolutional network),可以针对生成检测建议框的任务端到端地训练,能够同时预测出object的边界和分数。只是在CNN上额外增加了2个卷积层(全卷积层cls和reg)。

①将每个特征图的位置编码成一个特征向量(256dfor ZF and 512d for VGG)。

②对每一个位置输出一个objectness score和regressedbounds for k个region proposal,即在每个卷积映射位置输出这个位置上多种尺度(3种)和长宽比(3种)的k个(3*3=9)区域建议的物体得分和回归边界。

RPN网络的输入可以是任意大小(但还是有最小分辨率要求的,例如VGG是228*228)的图片。如果用VGG16进行特征提取,那么RPN网络的组成形式可以表示为VGG16+RPN。

RPN的具体流程如下:使用一个小网络在最后卷积得到的特征图上进行滑动扫描,这个滑动网络每次与特征图上n*n(论文中n=3)的窗口全连接(图像的有效感受野很大,ZF是171像素,VGG是228像素),然后映射到一个低维向量(256d for ZF / 512d for VGG),最后将这个低维向量送入到两个全连接层,即bbox回归层(reg)和box分类层(cls)。sliding window的处理方式保证reg-layer和cls-layer关联了conv5-3的全部特征空间。

reg层:预测proposal的anchor对应的proposal的(x,y,w,h)

cls层:判断该proposal是前景(object)还是背景(non-object)。

Faster R-CNN

分类层(cls_score)输出每一个位置上,9个anchor属于前景和背景的概率。

窗口回归层(bbox_pred)输出每一个位置上,9个anchor对应窗口应该平移缩放的参数(x,y,w,h)。

对于每一个位置来说,分类层从256维特征中输出属于前景和背景的概率;窗口回归层从256维特征中输出4个平移缩放参数。

需要注意的是:并没有显式地提取任何候选窗口,完全使用网络自身完成判断和修正。

我们已经描述了如何为生成区域建议训练网络,而没有考虑基于区域的目标检测CNN如何利用这些建议框。对于检测网络,我们采用Fast R-CNN,现在描述一种算法,学习由RPN和Fast R-CNN之间共享的卷积层。

RPN和Fast R-CNN都是独立训练的,要用不同方式修改它们的卷积层。因此需要开发一种允许两个网络间共享卷积层的技术,而不是分别学习两个网络。注意到这不是仅仅定义一个包含了RPN和Fast R-CNN的单独网络,然后用反向传播联合优化它那么简单。原因是Fast R-CNN训练依赖于固定的目标建议框,而且并不清楚当同时改变建议机制时,学习Fast R-CNN会不会收敛。

RPN在提取得到proposals后,作者选择使用Fast-R-CNN实现最终目标的检测和识别。RPN和Fast-R-CNN共用了13个VGG的卷积层,显然将这两个网络完全孤立训练不是明智的选择,作者采用交替训练(Alternating training)阶段卷积层特征共享:

第一步,我们依上述训练RPN,该网络用ImageNet预训练的模型初始化,并端到端微调用于区域建议任务;

第二步,我们利用第一步的RPN生成的建议框,由Fast R-CNN训练一个单独的检测网络,这个检测网络同样是由ImageNet预训练的模型初始化的,这时候两个网络还没有共享卷积层;

第三步,我们用检测网络初始化RPN训练,但我们固定共享的卷积层,并且只微调RPN独有的层,现在两个网络共享卷积层了;

第四步,保持共享的卷积层固定,微调Fast R-CNN的fc层。这样,两个网络共享相同的卷积层,构成一个统一的网络。

注意:第一次迭代时,用ImageNet得到的模型初始化RPN和Fast-R-CNN中卷积层的参数;从第二次迭代开始,训练RPN时,用Fast-R-CNN的共享卷积层参数初始化RPN中的共享卷积层参数,然后只Fine-tune不共享的卷积层和其他层的相应参数。训练Fast-RCNN时,保持其与RPN共享的卷积层参数不变,只Fine-tune不共享的层对应的参数。这样就可以实现两个网络卷积层特征共享训练。相应的网络模型请参考https://github.com/rbgirshick/py-faster-rcnn/tree/master/models/pascal_voc/VGG16/faster_rcnn_alt_opt