SparkJavaAPI:join的使用
将一组数据转化为RDD后,分别创造出两个PairRDD,然后再对两个PairRDD进行归约(即合并相同Key对应的Value),过程如下图所示:
代码实现如下:
-
public class SparkRDDDemo {
-
public static void main(String[] args){
-
SparkConf conf = new SparkConf().setAppName("SparkRDD").setMaster("local");
-
JavaSparkContext sc = new JavaSparkContext(conf);
-
List<Integer> data = Arrays.asList(1,2,3,4,5);
-
JavaRDD<Integer> rdd = sc.parallelize(data);
-
//FirstRDD
-
JavaPairRDD<Integer, Integer> firstRDD = rdd.mapToPair(new PairFunction<Integer, Integer, Integer>() {
-
@Override
-
public Tuple2<Integer, Integer> call(Integer num) throws Exception {
-
return new Tuple2<>(num, num * num);
-
}
-
});
-
//SecondRDD
-
JavaPairRDD<Integer, String> secondRDD = rdd.mapToPair(new PairFunction<Integer, Integer, String>() {
-
@Override
-
public Tuple2<Integer, String> call(Integer num) throws Exception {
-
return new Tuple2<>(num, String.valueOf((char)(64 + num * num)));
-
}
-
});
-
JavaPairRDD<Integer, Tuple2<Integer, String>> joinRDD = firstRDD.join(secondRDD);
-
JavaRDD<String> res = joinRDD.map(new Function<Tuple2<Integer, Tuple2<Integer, String>>, String>() {
-
@Override
-
public String call(Tuple2<Integer, Tuple2<Integer, String>> integerTuple2Tuple2) throws Exception {
-
int key = integerTuple2Tuple2._1();
-
int value1 = integerTuple2Tuple2._2()._1();
-
String value2 = integerTuple2Tuple2._2()._2();
-
return "<" + key + ",<" + value1 + "," + value2 + ">>";
-
}
-
});
-
List<String> resList = res.collect();
-
for(String str : resList)
-
System.out.println(str);
-
sc.stop();
-
}
-
}