用分类映射的办法分类两条夹角为0.3度的直线
继续用《用神经网络分类两条夹角为θ的直线》的办法分类两条直线
分类两条直线y=0,和y=x*tanθ,
(y=0,y=x*tanθ)—2*2*2—(1,0)(0,1)
这个角θ最小可以是多少?
用多次收敛取平均值的办法去测量θ的极小值。收敛标准有16个,每个收敛标准收敛199次,共尝试了θ从9到0.04共24个不同的值,一共收敛了24*16*199次。
得到的数据
θ |
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0.9 |
0.8 |
0.7 |
0.6 |
0.5 |
0.4 |
0.3 |
0.2 |
0.1 |
0.09 |
0.08 |
0.07 |
0.06 |
0.05 |
0.04 |
δ |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
0.5 |
195.3317 |
225.1256 |
230.8241 |
194.0603 |
260.1055 |
266.7538 |
256.6181 |
229.6633 |
267.9447 |
289.0704 |
266.7387 |
248.5327 |
280.6683 |
260.4322 |
234.9598 |
243.9296 |
269.809 |
261.4724 |
251.1106 |
270.0402 |
229.0402 |
256.1709 |
278.3668 |
291.3618 |
242.0503 |
0.4 |
13914.29 |
15650.57 |
17880.11 |
20209.6 |
24517.05 |
29278.5 |
36627.75 |
50957.44 |
77998.87 |
146102.9 |
173566.7 |
176639.8 |
189926.5 |
268967 |
323366.5 |
369113.9 |
420655.1 |
506942.3 |
2405873 |
2719082 |
2048413 |
2618378 |
4197245 |
5604986 |
4793757 |
0.3 |
15479.9 |
17332.98 |
19411.22 |
22473.04 |
27185.66 |
31413.58 |
41070.88 |
56023.05 |
83704.67 |
167101.1 |
184933.1 |
196349.9 |
215094.5 |
302524.9 |
354299.6 |
425524 |
478569.6 |
627099 |
2659858 |
2958164 |
2350955 |
2951109 |
4596583 |
6216997 |
5870306 |
0.2 |
16439.69 |
18223.97 |
20808.33 |
24174.77 |
28656.78 |
34997.63 |
43321.73 |
58718.62 |
89682.01 |
176946.5 |
196522.5 |
210620.7 |
236574.3 |
320900.7 |
401429.3 |
466824.3 |
531129.9 |
708706.7 |
2947430 |
3181111 |
2600654 |
3217961 |
4930519 |
6764221 |
6495452 |
0.1 |
17919.78 |
20062.16 |
22127.07 |
26230.42 |
30405.3 |
36263.06 |
46928.16 |
64122.4 |
96614.49 |
188302.3 |
215432.9 |
232926.9 |
259838.2 |
348587.1 |
417222 |
507597 |
572595 |
775833.8 |
3044634 |
3461076 |
2901890 |
3572008 |
5428360 |
7544252 |
7407801 |
0.01 |
22466.49 |
25275.75 |
27902.76 |
31928.63 |
37886.42 |
46846.11 |
57167.14 |
77672.2 |
115687.6 |
227748.1 |
263480.7 |
282903.4 |
318950.8 |
411941.7 |
508047.8 |
596253.1 |
643902.1 |
900253.2 |
3453155 |
3998794 |
3561226 |
4625189 |
6999017 |
9549422 |
1.10E+07 |
0.001 |
29045.94 |
32983.77 |
36326.36 |
40520.33 |
47857.63 |
57341.84 |
70818.73 |
94979.9 |
138107.1 |
274102.4 |
310804.6 |
335353.8 |
371230.4 |
473280.1 |
591728.4 |
654498.1 |
666656.9 |
949862.1 |
3706353 |
4318767 |
4046588 |
5247215 |
7728852 |
1.06E+07 |
1.22E+07 |
9.00E-04 |
29906.22 |
33366.44 |
36870.04 |
41179.77 |
47855.69 |
58431.72 |
71149.74 |
95579.46 |
139451.3 |
273893.8 |
314116.3 |
335751.5 |
379128.4 |
473682 |
587273.2 |
659923.1 |
666305.3 |
947896.2 |
3770298 |
4399940 |
4049285 |
5258015 |
7771985 |
1.06E+07 |
1.23E+07 |
8.00E-04 |
30505.62 |
33537.86 |
37364.13 |
42257.77 |
48099.17 |
58790.35 |
71160.06 |
97090.92 |
139448.4 |
281822.7 |
317464.8 |
340301.6 |
379438 |
482171 |
596464 |
669215.8 |
668917.3 |
951669.8 |
3743586 |
4333233 |
4065487 |
5250128 |
7753600 |
1.07E+07 |
1.24E+07 |
7.00E-04 |
30878.16 |
34642.3 |
37722.57 |
42657.75 |
49542.59 |
59781.34 |
73130.08 |
98491.56 |
141650.7 |
278769.2 |
320831.5 |
342315.5 |
379415.5 |
488048.1 |
598162.9 |
670672.5 |
672734.9 |
955540.8 |
3751633 |
4316054 |
4088694 |
5266705 |
7786100 |
1.07E+07 |
1.24E+07 |
6.00E-04 |
31735.77 |
35227.77 |
39393.62 |
43468.07 |
50670.44 |
60220.19 |
74846.17 |
98957.79 |
145869.6 |
280527.3 |
327816.6 |
346098.4 |
388231.7 |
491714.9 |
600249.3 |
669617.7 |
674191.6 |
957925.8 |
3773483 |
4346545 |
4109088 |
5288656 |
7937419 |
1.07E+07 |
1.25E+07 |
5.00E-04 |
32248.65 |
35900.43 |
39572.38 |
44431.86 |
51824.84 |
61375.43 |
75278.8 |
100319.9 |
146817.3 |
285198.8 |
327349.8 |
350935.4 |
388693.3 |
490760.5 |
608293.4 |
675595.2 |
709016.2 |
964057.8 |
3793037 |
4328763 |
4118079 |
5286847 |
7942442 |
1.08E+07 |
1.26E+07 |
4.00E-04 |
33464.13 |
37038.02 |
40763.43 |
45555.65 |
52685.73 |
63106.96 |
78705.99 |
101974 |
151146.5 |
290272.2 |
336662.4 |
356670.8 |
402343.9 |
509597.2 |
614457.4 |
692573.3 |
843940.2 |
966219 |
3836588 |
4353527 |
4136816 |
5314274 |
7984687 |
1.08E+07 |
1.27E+07 |
3.00E-04 |
34532.6 |
38848.82 |
42820.11 |
47207.83 |
55192.5 |
65049.65 |
80288.21 |
106443.1 |
152591.6 |
297656.1 |
345275.3 |
363816.7 |
410187.4 |
517031.4 |
623548.3 |
693778.8 |
893810.7 |
970565.6 |
3794636 |
4378692 |
4176950 |
5431542 |
8054188 |
1.08E+07 |
1.28E+07 |
2.00E-04 |
37157.44 |
41191.23 |
44549.33 |
49365.92 |
58211.46 |
68042.21 |
83957.31 |
110683.5 |
159184.3 |
305492.2 |
355278.5 |
375129.8 |
420971.9 |
533858.9 |
653484.1 |
719698.1 |
915560.8 |
981738.1 |
3855110 |
4505024 |
4219496 |
5479412 |
8086637 |
1.08E+07 |
1.30E+07 |
1.00E-04 |
40897.64 |
44706.82 |
49418.51 |
53947.74 |
62068.7 |
74072.9 |
91026.79 |
118315 |
171038.4 |
322420.1 |
372499.6 |
393522.3 |
444940.8 |
565152.9 |
660316.6 |
771687.4 |
955946.7 |
997062.7 |
3887811 |
4585959 |
4277563 |
5558074 |
8128276 |
1.10E+07 |
1.33E+07 |
0.5 |
0.675724 |
0.778792 |
0.798505 |
0.671326 |
0.8998 |
0.922799 |
0.887736 |
0.794489 |
0.926919 |
1 |
0.922747 |
0.859765 |
0.970934 |
0.90093 |
0.812812 |
0.843842 |
0.933368 |
0.904528 |
0.868683 |
0.934168 |
0.792334 |
0.886189 |
0.962973 |
1.007927 |
0.83734 |
0.4 |
0.095236 |
0.10712 |
0.12238 |
0.138324 |
0.167807 |
0.200396 |
0.250698 |
0.348778 |
0.533862 |
1 |
1.187976 |
1.209009 |
1.29995 |
1.840942 |
2.213279 |
2.526396 |
2.879169 |
3.469761 |
16.46698 |
18.61073 |
14.02034 |
17.92146 |
28.728 |
38.36326 |
32.81082 |
0.3 |
0.092638 |
0.103727 |
0.116165 |
0.134488 |
0.16269 |
0.187991 |
0.245785 |
0.335264 |
0.500922 |
1 |
1.106714 |
1.175036 |
1.287212 |
1.81043 |
2.120271 |
2.546506 |
2.863952 |
3.752812 |
15.91766 |
17.70284 |
14.06906 |
17.66062 |
27.50779 |
37.205 |
35.13026 |
0.2 |
0.092908 |
0.102991 |
0.117597 |
0.136622 |
0.161952 |
0.197787 |
0.24483 |
0.331844 |
0.506831 |
1 |
1.110633 |
1.190307 |
1.336983 |
1.813547 |
2.268648 |
2.638224 |
3.001642 |
4.005204 |
16.65719 |
17.97781 |
14.69741 |
18.18607 |
27.86447 |
38.2275 |
36.70857 |
0.1 |
0.095165 |
0.106542 |
0.117508 |
0.1393 |
0.161471 |
0.192579 |
0.249217 |
0.340529 |
0.513082 |
1 |
1.14408 |
1.236984 |
1.3799 |
1.85121 |
2.215704 |
2.69565 |
3.040829 |
4.120151 |
16.16886 |
18.38043 |
15.41081 |
18.96954 |
28.82791 |
40.06458 |
39.33994 |
0.01 |
0.098646 |
0.110981 |
0.122516 |
0.140193 |
0.166352 |
0.205693 |
0.25101 |
0.341044 |
0.507963 |
1 |
1.156895 |
1.242177 |
1.400454 |
1.80876 |
2.230744 |
2.618038 |
2.827256 |
3.952846 |
15.16217 |
17.55797 |
15.63669 |
20.30835 |
30.73139 |
41.92975 |
48.18644 |
0.001 |
0.105968 |
0.120334 |
0.132528 |
0.147829 |
0.174598 |
0.209199 |
0.258366 |
0.346513 |
0.503852 |
1 |
1.1339 |
1.223462 |
1.354349 |
1.726655 |
2.158786 |
2.387787 |
2.432146 |
3.465355 |
13.52179 |
15.75604 |
14.76305 |
19.14327 |
28.19695 |
38.73537 |
44.68858 |
9.00E-04 |
0.109189 |
0.121823 |
0.134614 |
0.150349 |
0.174724 |
0.213337 |
0.259771 |
0.348965 |
0.509144 |
1 |
1.146854 |
1.225845 |
1.384217 |
1.729436 |
2.144164 |
2.409412 |
2.432714 |
3.460816 |
13.76555 |
16.0644 |
14.78414 |
19.19727 |
28.37591 |
38.5603 |
44.86755 |
8.00E-04 |
0.108244 |
0.119003 |
0.13258 |
0.149945 |
0.170672 |
0.208608 |
0.252499 |
0.344511 |
0.494809 |
1 |
1.12647 |
1.207502 |
1.346371 |
1.710902 |
2.116451 |
2.374599 |
2.373539 |
3.376839 |
13.28348 |
15.37574 |
14.42569 |
18.62919 |
27.51233 |
38.08589 |
43.86378 |
7.00E-04 |
0.110766 |
0.124269 |
0.135318 |
0.153022 |
0.177719 |
0.214447 |
0.262332 |
0.353309 |
0.508129 |
1 |
1.150886 |
1.227953 |
1.361038 |
1.750724 |
2.145728 |
2.405834 |
2.413232 |
3.427713 |
13.45784 |
15.48253 |
14.66695 |
18.8927 |
27.93027 |
38.50134 |
44.61283 |
6.00E-04 |
0.113129 |
0.125577 |
0.140427 |
0.154951 |
0.180626 |
0.214668 |
0.266805 |
0.352756 |
0.519984 |
1 |
1.168573 |
1.233742 |
1.383936 |
1.752824 |
2.139718 |
2.386996 |
2.403301 |
3.414733 |
13.45139 |
15.49419 |
14.64773 |
18.85255 |
28.29464 |
38.31549 |
44.58581 |
5.00E-04 |
0.113074 |
0.125879 |
0.138754 |
0.155793 |
0.181715 |
0.215202 |
0.263952 |
0.351754 |
0.514789 |
1 |
1.147795 |
1.230494 |
1.362885 |
1.720766 |
2.132875 |
2.368857 |
2.486042 |
3.380301 |
13.29963 |
15.17805 |
14.43933 |
18.53741 |
27.84879 |
37.74883 |
44.17618 |
4.00E-04 |
0.115285 |
0.127598 |
0.140432 |
0.156941 |
0.181505 |
0.217406 |
0.271146 |
0.351305 |
0.520706 |
1 |
1.159816 |
1.228746 |
1.386092 |
1.755584 |
2.116832 |
2.385945 |
2.90741 |
3.328666 |
13.21721 |
14.99809 |
14.25151 |
18.3079 |
27.50759 |
37.1753 |
43.77628 |
3.00E-04 |
0.116015 |
0.130516 |
0.143858 |
0.158599 |
0.185424 |
0.21854 |
0.269735 |
0.357604 |
0.512644 |
1 |
1.159981 |
1.222272 |
1.378058 |
1.737009 |
2.094861 |
2.330806 |
3.00283 |
3.260694 |
12.74839 |
14.71057 |
14.0328 |
18.24771 |
27.0587 |
36.24465 |
43.16978 |
2.00E-04 |
0.121631 |
0.134836 |
0.145828 |
0.161595 |
0.19055 |
0.22273 |
0.274826 |
0.362312 |
0.521075 |
1 |
1.162971 |
1.227952 |
1.378012 |
1.747537 |
2.139119 |
2.355864 |
2.997002 |
3.213627 |
12.61934 |
14.74677 |
13.81212 |
17.93634 |
26.47085 |
35.30276 |
42.54276 |
1.00E-04 |
0.126846 |
0.13866 |
0.153274 |
0.167321 |
0.192509 |
0.22974 |
0.282324 |
0.366959 |
0.530483 |
1 |
1.155324 |
1.220526 |
1.380003 |
1.752846 |
2.048001 |
2.393422 |
2.96491 |
3.092433 |
12.05821 |
14.22355 |
13.26705 |
17.23861 |
25.2102 |
34.05152 |
41.16793 |
average(0.4:1e-4) |
0.107649 |
0.11999 |
0.132919 |
0.149685 |
0.175354 |
0.209888 |
0.26022 |
0.348897 |
0.513218 |
1 |
1.147924 |
1.220134 |
1.361297 |
1.767278 |
2.152345 |
2.454956 |
2.735065 |
3.514797 |
14.11971 |
16.15065 |
14.46165 |
18.53527 |
27.87105 |
37.90077 |
41.97517 |
1/θ |
0.1 |
0.111111 |
0.125 |
0.142857 |
0.166667 |
0.2 |
0.25 |
0.333333 |
0.5 |
1 |
1.111111 |
1.25 |
1.428571 |
1.666667 |
2 |
2.5 |
3.333333 |
5 |
10 |
11.11111 |
12.5 |
14.28571 |
16.66667 |
20 |
25 |
迭代次数随着角度θ的减小而逐渐增加
假设1:完全相同的两个对象无法被分成两类,与之对应的分类迭代次数为无穷大,分类准确率是50%,50%。相等收敛标准下迭代次数越大表明二者差异越小。
这一现象可以用假设1解释,因为θ减小将导致两条直线趋近重合,并导致差异减小,从而迭代次数增加。
另外发现迭代次数在0.4<=θ<=10内有一个非常明显的规律
角θ的迭代次数与当θ=1时的迭代次数的比约为1/θ。
比如当θ=0.6,收敛标准=1e-4时,n0.6的迭代次数实测为565152,用公式估算=322420/0.6=537366误差约为5%。
再观察分类准确率的数据
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0.9 |
0.8 |
0.7 |
0.6 |
0.5 |
0.4 |
0.3 |
0.2 |
0.1 |
0.09 |
0.08 |
0.07 |
0.06 |
0.05 |
0.04 |
|
δ |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
平均准确率p-ave |
0.5 |
0.501347 |
0.500349 |
0.5 |
0.500465 |
0.500181 |
0.500008 |
0.500186 |
0.499902 |
0.500088 |
0.500058 |
0.500417 |
0.500093 |
0.499915 |
0.500043 |
0.500362 |
0.499809 |
0.500028 |
0.499759 |
0.500166 |
0.500101 |
0.499957 |
0.500158 |
0.499889 |
0.50005 |
0.500043 |
0.4 |
0.965457 |
0.967872 |
0.977319 |
0.965643 |
0.962161 |
0.924279 |
0.849533 |
0.654043 |
0.620018 |
0.529583 |
0.534296 |
0.53143 |
0.515324 |
0.510666 |
0.500274 |
0.500503 |
0.51903 |
0.506133 |
0.495249 |
0.499899 |
0.49605 |
0.486945 |
0.5 |
0.497138 |
0.505809 |
0.3 |
0.979269 |
0.979417 |
0.984598 |
0.974613 |
0.981173 |
0.97992 |
0.976807 |
0.931113 |
0.772146 |
0.547513 |
0.513965 |
0.530126 |
0.516329 |
0.515837 |
0.502889 |
0.506289 |
0.519357 |
0.5105 |
0.499106 |
0.5 |
0.498055 |
0.489545 |
0.504015 |
0.5 |
0.503229 |
0.2 |
0.98297 |
0.986837 |
0.989935 |
0.979264 |
0.98855 |
0.985882 |
0.977925 |
0.982726 |
0.97196 |
0.645862 |
0.530299 |
0.559523 |
0.512407 |
0.563915 |
0.50843 |
0.513314 |
0.527407 |
0.525181 |
0.514977 |
0.501131 |
0.497 |
0.4995 |
0.5095 |
0.497 |
0.504304 |
0.1 |
0.986819 |
0.991279 |
0.99349 |
0.983701 |
0.991153 |
0.990673 |
0.986299 |
0.986138 |
0.979013 |
0.921229 |
0.929317 |
0.889746 |
0.790874 |
0.971769 |
0.520312 |
0.793568 |
0.5 |
0.940548 |
0.4985 |
0.4995 |
0.503852 |
0.5 |
0.511005 |
0.504497 |
0.516148 |
0.01 |
0.994842 |
0.995472 |
0.996307 |
0.99146 |
0.995342 |
0.995211 |
0.994942 |
0.992905 |
0.989357 |
0.994261 |
0.99459 |
0.992812 |
0.992616 |
0.987146 |
0.997487 |
0.997111 |
0.511955 |
0.541201 |
0.5 |
0.5 |
0.500658 |
0.874975 |
0.508 |
0.5 |
0.5 |
0.001 |
0.995392 |
0.998774 |
0.997809 |
0.992874 |
0.996284 |
0.996626 |
0.996575 |
0.993472 |
0.99002 |
0.997613 |
0.994103 |
0.995118 |
0.995784 |
0.996 |
0.99449 |
0.9985 |
0.508003 |
0.5 |
0.988 |
0.5 |
0.501281 |
0.5 |
0.5 |
0.5025 |
0.5 |
9.00E-04 |
0.995389 |
0.99843 |
0.99791 |
0.992389 |
0.996776 |
0.996671 |
0.99693 |
0.993018 |
0.990379 |
0.998018 |
0.994038 |
0.995043 |
0.995731 |
0.996 |
0.994515 |
0.9985 |
0.507741 |
0.5 |
0.988 |
0.5 |
0.501274 |
0.5 |
0.5 |
0.5025 |
0.5 |
8.00E-04 |
0.995324 |
0.99853 |
0.997563 |
0.993065 |
0.997299 |
0.996771 |
0.997163 |
0.993183 |
0.990204 |
0.99846 |
0.994143 |
0.995349 |
0.995467 |
0.996 |
0.994073 |
0.9985 |
0.507603 |
0.5 |
0.91201 |
0.5 |
0.5015 |
0.5 |
0.5 |
0.5 |
0.5 |
7.00E-04 |
0.99553 |
0.998462 |
0.997814 |
0.993568 |
0.997216 |
0.996621 |
0.997503 |
0.993161 |
0.990754 |
0.999171 |
0.994422 |
0.995337 |
0.995116 |
0.996 |
0.994158 |
0.998646 |
0.50748 |
0.5 |
0.5 |
0.5 |
0.5015 |
0.5 |
0.5 |
0.5 |
0.5 |
6.00E-04 |
0.995701 |
0.998153 |
0.997477 |
0.993611 |
0.997038 |
0.996734 |
0.997163 |
0.993317 |
0.991601 |
0.999329 |
0.994794 |
0.99507 |
0.994882 |
0.996 |
0.994264 |
0.999153 |
0.507442 |
0.5 |
0.5 |
0.5 |
0.5015 |
0.5 |
0.5 |
0.5 |
0.5 |
5.00E-04 |
0.995807 |
0.998377 |
0.997364 |
0.992163 |
0.996402 |
0.996794 |
0.997319 |
0.993678 |
0.991779 |
0.9995 |
0.995254 |
0.995191 |
0.99497 |
0.996 |
0.993719 |
0.9995 |
0.581188 |
0.5 |
0.5 |
0.5 |
0.5015 |
0.5 |
0.5 |
0.5 |
0.5 |
4.00E-04 |
0.996681 |
0.998332 |
0.997437 |
0.99199 |
0.996595 |
0.996812 |
0.997384 |
0.994161 |
0.992859 |
0.9995 |
0.995364 |
0.995035 |
0.995274 |
0.996 |
0.993882 |
0.9995 |
0.905487 |
0.5 |
0.507236 |
0.5 |
0.500691 |
0.5 |
0.5 |
0.5 |
0.5 |
3.00E-04 |
0.996693 |
0.998889 |
0.99749 |
0.991543 |
0.996111 |
0.996399 |
0.99751 |
0.993445 |
0.992739 |
0.9995 |
0.995638 |
0.994972 |
0.996121 |
0.996 |
0.993704 |
0.999643 |
0.9965 |
0.5 |
0.961063 |
0.5 |
0.5005 |
0.5 |
0.5 |
0.5 |
0.5 |
2.00E-04 |
0.997003 |
0.999332 |
0.998131 |
0.99245 |
0.996814 |
0.996565 |
0.997631 |
0.993932 |
0.993583 |
0.9995 |
0.995653 |
0.994324 |
0.997023 |
0.996 |
0.994352 |
1 |
0.996573 |
0.501005 |
0.981779 |
0.5 |
0.5005 |
0.5 |
0.5 |
0.5 |
0.5 |
1.00E-04 |
0.996279 |
0.998724 |
0.99858 |
0.993922 |
0.997259 |
0.997435 |
0.997844 |
0.994296 |
0.994786 |
0.9995 |
0.995111 |
0.99446 |
0.996342 |
0.9965 |
0.996186 |
1 |
0.997 |
0.506156 |
0.9845 |
0.5 |
0.5005 |
0.5 |
0.5 |
0.5 |
0.502025 |
在0.3<=θ<=10这个区间,可以明显的观察到pave有上升的趋势,分类准确率很高,接近100%。但当θ<0.3以后pave急剧下降,到接近50%。也就是当θ<0.3以后虽然网络仍然可以收敛但已经不能有效分类。
也就是用映射法分类两条直线,θ最小值约为0.3度。