select-epoll比较




转子:http://www.cnblogs.com/Anker/p/3265058.html

select,poll,epoll都是IO多路复用的机制。I/O多路复用就通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。但select,poll,epoll本质上都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的,而异步I/O则无需自己负责进行读写,异步I/O的实现会负责把数据从内核拷贝到用户空间。关于这三种IO多路复用的用法,前面三篇总结写的很清楚,并用服务器回射echo程序进行了测试。连接如下所示:

select:http://www.cnblogs.com/Anker/archive/2013/08/14/3258674.html

poll:http://www.cnblogs.com/Anker/archive/2013/08/15/3261006.html

epoll:http://www.cnblogs.com/Anker/archive/2013/08/17/3263780.html

  今天对这三种IO多路复用进行对比,参考网上和书上面的资料,整理如下:

1、select实现

select的调用过程如下所示:

select-epoll比较

(1)使用copy_from_user从用户空间拷贝fd_set到内核空间

(2)注册回调函数__pollwait

(3)遍历所有fd,调用其对应的poll方法(对于socket,这个poll方法是sock_poll,sock_poll根据情况会调用到tcp_poll,udp_poll或者datagram_poll)

(4)以tcp_poll为例,其核心实现就是__pollwait,也就是上面注册的回调函数。

(5)__pollwait的主要工作就是把current(当前进程)挂到设备的等待队列中,不同的设备有不同的等待队列,对于tcp_poll来说,其等待队列是sk->sk_sleep(注意把进程挂到等待队列中并不代表进程已经睡眠了)。在设备收到一条消息(网络设备)或填写完文件数据(磁盘设备)后,会唤醒设备等待队列上睡眠的进程,这时current便被唤醒了。

(6)poll方法返回时会返回一个描述读写操作是否就绪的mask掩码,根据这个mask掩码给fd_set赋值。

(7)如果遍历完所有的fd,还没有返回一个可读写的mask掩码,则会调用schedule_timeout是调用select的进程(也就是current)进入睡眠。当设备驱动发生自身资源可读写后,会唤醒其等待队列上睡眠的进程。如果超过一定的超时时间(schedule_timeout指定),还是没人唤醒,则调用select的进程会重新被唤醒获得CPU,进而重新遍历fd,判断有没有就绪的fd。

(8)把fd_set从内核空间拷贝到用户空间。

总结:

select的几大缺点:

(1)每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大

(2)同时每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大

(3)select支持的文件描述符数量太小了,默认是1024

2 poll实现

  poll的实现和select非常相似,只是描述fd集合的方式不同,poll使用pollfd结构而不是select的fd_set结构,其他的都差不多。

关于select和poll的实现分析,可以参考下面几篇博文:

http://blog.****.net/lizhiguo0532/article/details/6568964#comments

http://blog.****.net/lizhiguo0532/article/details/6568968

http://blog.****.net/lizhiguo0532/article/details/6568969

http://www.ibm.com/developerworks/cn/linux/l-cn-edntwk/index.html?ca=drs-

http://linux.chinaunix.net/techdoc/net/2009/05/03/1109887.shtml

3、epoll

  epoll既然是对select和poll的改进,就应该能避免上述的三个缺点。那epoll都是怎么解决的呢?在此之前,我们先看一下epoll和select和poll的调用接口上的不同,select和poll都只提供了一个函数——select或者poll函数。而epoll提供了三个函数,epoll_create,epoll_ctl和epoll_wait,epoll_create是创建一个epoll句柄;epoll_ctl是注册要监听的事件类型;epoll_wait则是等待事件的产生。

  对于第一个缺点,epoll的解决方案在epoll_ctl函数中。每次注册新的事件到epoll句柄中时(在epoll_ctl中指定EPOLL_CTL_ADD),会把所有的fd拷贝进内核,而不是在epoll_wait的时候重复拷贝。epoll保证了每个fd在整个过程中只会拷贝一次。也就是每个新的socket加到内核中,只返回数据准备好额socket,不是真正的共享内存机制,只是相比select数据的拷贝次数很少罢了。

  对于第二个缺点,epoll的解决方案不像select或poll一样每次都把current轮流加入fd对应的设备等待队列中,而只在epoll_ctl时把current挂一遍(这一遍必不可少)并为每个fd指定一个回调函数,当设备就绪,唤醒等待队列上的等待者时,就会调用这个回调函数,而这个回调函数会把就绪的fd加入一个就绪链表)。epoll_wait的工作实际上就是在这个就绪链表中查看有没有就绪的fd(利用schedule_timeout()实现睡一会,判断一会的效果,和select实现中的第7步是类似的)。

  对于第三个缺点,epoll没有这个限制,它所支持的FD上限是最大可以打开文件的数目,这个数字一般远大于2048,举个例子,在1GB内存的机器上大约是10万左右,具体数目可以cat /proc/sys/fs/file-max察看,一般来说这个数目和系统内存关系很大。

总结:

(1)select,poll实现需要自己不断轮询所有fd集合,直到设备就绪,期间可能要睡眠和唤醒多次交替。而epoll其实也需要调用epoll_wait不断轮询就绪链表,期间也可能多次睡眠和唤醒交替,但是它是设备就绪时,调用回调函数,把就绪fd放入就绪链表中,并唤醒在epoll_wait中进入睡眠的进程。虽然都要睡眠和交替,但是select和poll在“醒着”的时候要遍历整个fd集合,而epoll在“醒着”的时候只要判断一下就绪链表是否为空就行了,这节省了大量的CPU时间。这就是回调机制带来的性能提升。

(2)select,poll每次调用都要把fd集合从用户态往内核态拷贝一次,并且要把current往设备等待队列中挂一次,而epoll只要一次拷贝,而且把current往等待队列上挂也只挂一次(在epoll_wait的开始,注意这里的等待队列并不是设备等待队列,只是一个epoll内部定义的等待队列)。这也能节省不少的开销。

参考资料:

http://www.cnblogs.com/apprentice89/archive/2013/05/09/3070051.html

http://www.linuxidc.com/Linux/2012-05/59873p3.htm

http://xingyunbaijunwei.blog.163.com/blog/static/76538067201241685556302/

http://blog.****.net/kkxgx/article/details/7717125

https://banu.com/blog/2/how-to-use-epoll-a-complete-example-in-c/epoll-example.c


epoll改进

epoll改进了select的两个缺点,使用了三个数据结构从而能够在管理大量的描述符的情况下,对系统资源的使用并没有急剧的增加,而只是对内存的使用有所增加(毕竟存储大量的描述符的数据结构会占用大量内存)。

epoll在实现上的三个核心点是:1、伪mmap,2、红黑树,3、rdlist(就绪描述符链表)接下来一一解释这三个并且解释为什么会高效;

1、mmap是内存映射,用户进程和内核有一段地址(虚拟存储器地址)映射到了同一块物理地址上,这样当内核要对描述符上的事件进行检查的时候就不用来回的拷贝了

使用了copy_from_user跟__put_user进行内核跟用户虚拟空间数据交互.只是epoll只copy一次,每次来新的socket也只添加一次,只返回就绪的socket

2、红黑树是用来存储这些描述符的,因为红黑树的特性,就是良好的插入,查找,删除性能O(lgN)。

     当内核初始化epoll的时候(当调用epoll_create的时候内核也是个epoll描述符创建了一个文件,毕竟在Linux中一切都是文件,而epoll面对的是一个特殊的文件,和普通文件不同),会开辟出一块内核高速cache区,这块区域用来存储我们要监管的所有的socket描述符,当然在这里面存储一定有一个数据结构,这就是红黑树,由于红黑树的接近平衡的查找,插入,删除能力,在这里显著的提高了对描述符的管理。

3、rdlist   就绪描述符链表这是一个双链表,epoll_wait()函数返回的也是这个就绪链表。

     当内核创建了红黑树之后,同时也会建立一个双向链表rdlist,用于存储准备就绪的描述符,当调用epoll_wait的时候在timeout时间内,只是简单的去管理这个rdlist中是否有数据,如果没有则睡眠至超时,如果有数据则立即返回并将链表中的数据赋值到events数组中。这样就能够高效的管理就绪的描述符,而不用去轮询所有的描述符。所以当管理的描述符很多但是就绪的描述符数量很少的情况下如果用select来实现的话效率可想而知,很低,但是epoll的话确实是非常适合这个时候使用。

      对与rdlist的维护:当执行epoll_ctl时除了把socket描述符放入到红黑树中之外,还会给内核中断处理程序注册一个回调函数,告诉内核,当这个描述符上有事件到达(或者说中断了)的时候就调用这个回调函数。这个回调函数的作用就是将描述符放入到rdlist中,所以当一个socket上的数据到达的时候内核就会把网卡上的数据复制到内核,然后把socket描述符插入就绪链表rdlist中。


补充:epoll的工作模式ET和LT

都知道epoll有两个工作模式,ET和LT,其中ET模式是高速模式,叫做边缘触发模式,LT模式是默认模式,叫做水平触发模式。

这两种工作模式的区别在于:

当工作在ET模式下,如果一个描述符上有数据到达,然后读取这个描述符上的数据如果没有将数据全部读完的话,当下次epoll_wait返回的时候这个描述符里的数据就再也读取不到了,因为这个描述符不会再次触发返回,也就没法去读取,所以对于这种模式下对一个描述符的数据的正确读取方式是用一个死循环一直读,读到么有数据可读的情况下才可以认为是读取结束。

而工作在LT模式下,这种情况就不会发生,如果对一个描述符的数据没有读取完成,那么下次当epoll_wait返回的时候会继续触发,也就可以继续获取到这个描述符,从而能够接着读。


那么这两种模式的实现方式是什么样的?

基于以上的数据结构是怎么实现这种工作模式的呢?

实现原理:当一个socket描述符的中断事件发生,内核会将数据从网卡复制到内核,同时将socket描述符插入到rdlist中,此时如果调用了epoll_wait会把rdlist中的就绪的socekt描述符复制到用户空间,然后清理掉这个rdlist中的数据,最后epoll_wait还会再次检查这些socket描述符,如果是工作在LT模式下,并且这些socket描述符上还有数据没有读取完成,那么L就会再次把没有读完的socket描述符放入到rdlist中,所以再次调用epoll_wait的时候是会再次触发的,而ET模式是不会这么干的。


ET模式在物理实现上是基于电平的高低变化来工作的,就是从高电平变成低电平,或者从低电平变成高电平的这个上升沿或者下降沿才会触发,也就是状态变化导致触发,而当一个描述符上数据未读完的时候这个状态是不会发生变化的,所以触发不了,LT模式是在只有出现高电平的时候才会触发。


高电平和低电平:

LT水平触发:

EPOLLIN的触发事件:当输入缓冲区为空-->低电平,当输入缓冲区不为空-->高电平

高电平的时候触发EPOLLIN事件,如果没有把缓冲区的数据读取完,下次还会触发的,因为始终是高电平

EPOLLOUT的触发事件:当发送缓冲区满-->低电平,当发送缓冲区不满-->高电平

高电平的时候触发EPOLLOUT事件,所以在一开始的时候不要关注EPOLLOUT时间,因为发送缓冲区是不满的所以会导致CPU忙等待,每次都触发。什么时候关注EPOLLOUT事件呢? 当write的时候没有写完全,因为发送缓冲区满了,这个时候才关注EPOLLOUT事件直到下次把所有数据都发送完毕了,才取消EPOLLOUT事件

ET边缘触发:

EPOLLIN事件发生的条件:

有数据到来(输入缓冲区初始为空,为低电平,有数据到来变成了高电平)

EPOLLout事件发生的条件:

内核发送缓冲区不满(当发送缓冲区出现满之后为低电平,然后内核发送出去了部分数据后变成了不满,也就是高电平)