高并发id生成
因此,此种基于随机数生成唯一ID或者订单编号的方式,我们是可以Pass掉了(当然啦,在并发量不是很高的情况下,这种方式还是阔以使用的,因为简单而且易于理解啊!),鉴于此种“基于随机数生成”的方式在高并发的场景下并不符合我们的要求,接下来,我们将介绍另外一种比较流行的、典型的方式,即“分布式唯一ID生成算法-雪花算法”来实现。
对于“雪花算法”的介绍,各位小伙伴可以参考Github上的这一链接,我觉得讲得还是挺清晰的:https://github.com/souyunku/SnowFlake ,详细的Debug在这里就不赘述了,下面截取了部分概述:
SnowFlake算法在分布式的环境下,之所以能高效率的生成唯一的ID,我觉得其中很重要的一点在于其底层的实现是通过“位运算”来实现的,简单来讲,就是直接跟机器打交道!其底层数据的存储结构(64位)如下图所示:
下面,我们就直接基于雪花算法来生成秒杀系统中需要的订单编号吧!
(1)同样的道理,我们首先定义一个Thread类,其run方法的实现逻辑是借助雪花算法生成订单编号并将其插入到数据库中。
/** 基于雪花算法生成全局唯一的订单编号并插入数据库表中 * @Author:debug (SteadyJack) * @Date: 2019/7/11 10:30 **/ public class CodeGenerateSnowThread implements Runnable{ private static final SnowFlake SNOW_FLAKE=new SnowFlake(2,3); private RandomCodeMapper randomCodeMapper; public CodeGenerateSnowThread(RandomCodeMapper randomCodeMapper) { this.randomCodeMapper = randomCodeMapper; } @Override public void run() { RandomCode entity=new RandomCode(); //采用雪花算法生成订单编号 entity.setCode(String.valueOf(SNOW_FLAKE.nextId())); randomCodeMapper.insertSelective(entity); } }
其中,SNOW_FLAKE.nextId() 的方法正是采用雪花算法生成全局唯一的订单编号的逻辑,其完整的源代码如下所示:
/** * 雪花算法 * @author: zhonglinsen * @date: 2019/5/20 */ public class SnowFlake { //起始的时间戳 private final static long START_STAMP = 1480166465631L; //每一部分占用的位数 private final static long SEQUENCE_BIT = 12; //***占用的位数 private final static long MACHINE_BIT = 5; //机器标识占用的位数 private final static long DATA_CENTER_BIT = 5;//数据中心占用的位数 //每一部分的最大值 private final static long MAX_DATA_CENTER_NUM = -1L ^ (-1L << DATA_CENTER_BIT); private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT); private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT); //每一部分向左的位移 private final static long MACHINE_LEFT = SEQUENCE_BIT; private final static long DATA_CENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT; private final static long TIMESTAMP_LEFT = DATA_CENTER_LEFT + DATA_CENTER_BIT; private long dataCenterId; //数据中心 private long machineId; //机器标识 private long sequence = 0L; //*** private long lastStamp = -1L;//上一次时间戳 public SnowFlake(long dataCenterId, long machineId) { if (dataCenterId > MAX_DATA_CENTER_NUM || dataCenterId < 0) { throw new IllegalArgumentException("dataCenterId can't be greater than MAX_DATA_CENTER_NUM or less than 0"); } if (machineId > MAX_MACHINE_NUM || machineId < 0) { throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0"); } this.dataCenterId = dataCenterId; this.machineId = machineId; } //产生下一个ID public synchronized long nextId() { long currStamp = getNewStamp(); if (currStamp < lastStamp) { throw new RuntimeException("Clock moved backwards. Refusing to generate id"); } if (currStamp == lastStamp) { //相同毫秒内,***自增 sequence = (sequence + 1) & MAX_SEQUENCE; //同一毫秒的序列数已经达到最大 if (sequence == 0L) { currStamp = getNextMill(); } } else { //不同毫秒内,***置为0 sequence = 0L; } lastStamp = currStamp; return (currStamp - START_STAMP) << TIMESTAMP_LEFT //时间戳部分 | dataCenterId << DATA_CENTER_LEFT //数据中心部分 | machineId << MACHINE_LEFT //机器标识部分 | sequence; //***部分 } private long getNextMill() { long mill = getNewStamp(); while (mill <= lastStamp) { mill = getNewStamp(); } return mill; } private long getNewStamp() { return System.currentTimeMillis(); } }
(2)紧接着,我们在BaseController中开发一个请求方法,用于模拟前端触发高并发产生多线程抢单的场景。
/** * 测试在高并发下多线程生成订单编号-雪花算法 * @return */ @RequestMapping(value = "/code/generate/thread/snow",method = RequestMethod.GET) public BaseResponse codeThreadSnowFlake(){ BaseResponse response=new BaseResponse(StatusCode.Success); try { ExecutorService executorService=Executors.newFixedThreadPool(10); for (int i=0;i<1000;i++){ executorService.execute(new CodeGenerateSnowThread(randomCodeMapper)); } }catch (Exception e){ response=new BaseResponse(StatusCode.Fail.getCode(),e.getMessage()); } return response; }
(3)完了之后,我们采用Postman发起一个Http的Get请求,其请求链接如下所示:http://127.0.0.1:8092/kill/base/code/generate/thread/snow ,观察控制台的输出信息,可以看到“一片安然的景象”,再观察数据库表的记录,可以发现,1000个线程成功触发生成了1000个对应的订单编号,如下图所示:
除此之外,各位小伙伴还可以将线程数从1000调整为10000、100000甚至1000000,然后观察控制台的输出信息以及数据库表的记录等等。
Debug亲测了1w跟10w的场景下是木有问题的,100w的线程数的测试就交给各位小伙伴去试试了(时间比较长,要有心理准备哦!)至此,我们就可以将雪花算法生成全局唯一的订单编号的逻辑应用到我们的“秒杀处理逻辑”中,即其代码(在KillService的commonRecordKillSuccessInfo方法中)如下所示:
ItemKillSuccess entity=new ItemKillSuccess(); String orderNo=String.valueOf(snowFlake.nextId());//雪花算法 entity.setCode(orderNo); //其他代码省略
补充:
1、目前,这一秒杀系统的整体构建与代码实战已经全部完成了,完整的源代码数据库地址可以来这里下载:https://gitee.com/steadyjack/SpringBoot-SecondKill 记得Fork跟Star啊!!!