pico在lfw上测试检测率
测试pico在lfw上的检测率。
lfw给定的文件格式:
每个名称文件夹下有一张或多张图片。
- #include "io.h"
- std::vector<std::string> list_folders(std::string pathname)
- {
- std::vector<std::string> folders;
- _finddata_t folder;
- std::string findpath = pathname + "\\*";
- long handle = _findfirst(findpath.c_str(),&folder);
- if(handle == -1)
- {
- std::cerr << "no such path" << std::endl;
- system("pause");
- exit(-1);
- }
- do
- {
- if(folder.attrib & _A_SUBDIR)
- {
- if( (strcmp(folder.name, ".") != 0) && (strcmp(folder.name, "..") != 0) )
- {
- std::string newpath = pathname + "\\" + folder.name;
- folders.push_back(newpath);
- }
- }
- }while( _findnext(handle, &folder) == 0 );
- return folders;
- }
- std::vector<std::string> list_files(std::string pathname)
- {
- std::vector<std::string> files;
- _finddata_t file;
- std::string findpath = pathname + "\\*";
- long handle = _findfirst(findpath.c_str(),&file);
- if(handle == -1)
- {
- std::cerr << "no such path" << std::endl;
- system("pause");
- exit(-1);
- }
- do
- {
- if(!(file.attrib & _A_SUBDIR))
- {
- files.push_back(pathname + "\\" + file.name);
- }
- }while( _findnext(handle, &file) == 0 );
- return files;
- }
在此基础上:
- std::string root = "C:\\Users\\zhuqian\\Desktop\\pico_face_detect\\lfw\\lfw";
- std::vector<std::string> all = list_folders(root);
- for (std::vector<std::string>::const_iterator it = all.begin(); it!=all.end();++it)
- {
- //std::cout << *it << std::endl;
- std::vector<std::string> filename = list_files(*it);
- for (std::vector<std::string>::const_iterator subit = filename.begin();subit!=filename.end();
- ++subit)
- {
- IplImage* img;
- allface += 1;
- //
- img = cvLoadImage(subit->c_str(), CV_LOAD_IMAGE_COLOR);
- if(!img)
- {
- printf("# cannot load image from '%s'\n", subit->c_str());
- return 0;
- }
- process_image(img, 1, *it);
- cvReleaseImage(&img);
- }
- }
- std::cout << "lossdect: " << lossdect << std::endl;
- std::cout << "falsedect: " << falsedect << std::endl;
- std::cout << "allface" << allface << std::endl;
- std::cout << "lossdectRate: " << (double)lossdect/allface << std::endl;
- std::cout << "facedectRate: " << (double)falsedect/allface << std::endl;
- if(draw)
- for(i=0; i<ndetections; ++i)
- if(qs[i]>=qthreshold) // check the confidence threshold
- {
- /*cv::Rect r1(cs[i]-ss[i]/2, rs[i]-ss[i]/2, ss[i], ss[i]); //矩阵标记
- cv::Mat img(frame,0); //IplImage转Mat
- cv::Mat face(img(r1));*/ //取矩阵
- //std::stringstream s;
- //s << i; //int转string的方法之一
- //cv::imwrite(path + "result_" + s.str() + ".jpg", face);
- cvCircle(frame, cvPoint(cs[i], rs[i]), ss[i]/2, CV_RGB(255, 0, 0), 4, 8, 0); // we draw circles here since height-to-width ratio of the detected face regions is 1.0f
- }
- static int nnn=0;
- std::stringstream s;
- s << nnn++;
- if (ndetections==0) //记录误检漏检率,并在项目路径下写检测后的图片,便于人眼观察。
- {
- cv::imwrite("lossdect" + s.str() + ".jpg", cv::Mat(frame,0));
- lossdect += 1;
- }
- if (ndetections>1)
- {
- falsedect += ndetections-1;
- std::cout << path << std::endl;
- cv::imwrite("falsedect" + s.str() + ".jpg", cv::Mat(frame,0));
- }
- else
- {
- cv::imwrite("right" + s.str() + ".jpg", cv::Mat(frame,0));
- }
- // if the `verbose` flag is set, print the results to standard output
- if(verbose)
- {
- //
- for(i=0; i<ndetections; ++i)
- if(qs[i]>=qthreshold) // check the confidence threshold
- printf("%d %d %d %f\n", (int)rs[i], (int)cs[i], (int)ss[i], qs[i]);
- //
- //printf("# %f\n", 1000.0f*t); // use '#' to ignore this line when parsing the output of the program
- }
样本:13233. 漏检84. 误检150. (漏检率:0.6%,误检率:1.1%)
还有参数设置,如果参数能够根据样本中人脸的大小(先验知识)作相应修改,效果会更好。