银行家问题(java实现)
引用来自 https://blog.****.net/u012116457/article/details/25384571
首先,介绍一下银行家算法问题的产生与它的重大意义。
银行家算法(Banker's Algorithm)是一个避免死锁(Deadlock)的著名算法,是由艾兹格·迪杰斯特拉在1965年为T.H.E系统设计的一种避免死锁产生的算法。它以银行借贷系统的分配策略为基础,判断并保证系统的安全运行。
安全状态:如果存在一个由系统中所有进程构成的安全序列P1,…,Pn,则系统处于安全状态。安全状态一定是没有死锁发生。
不安全状态:不存在一个安全序列。不安全状态不一定导致死锁。
也就是说,系统程序的运行时期,占用相同寄存器之类的共有资源时,需要找到一条不唯一的执行串链。如果这么一条可执行串链存在,那么系统就不会发生死锁问题,如果找不到。那么系统必定会产生死锁问题。
百度百科解释,著名银行家算法的的数据结构。
1)可利用资源向量Available
是个含有m个元素的数组,其中的每一个元素代表一类可利用的资源数目。如果Available[j]=K,则表示系统中现有Rj类资源K个。
2)最大需求矩阵Max
这是一个n×m的矩阵,它定义了系统中n个进程中的每一个进程对m类资源的最大需求。如果Max[i,j]=K,则表示进程i需要Rj类资源的最大数目为K。
3)分配矩阵Allocation
这也是一个n×m的矩阵,它定义了系统中每一类资源当前已分配给每一进程的资源数。如果Allocation[i,j]=K,则表示进程i当前已分得Rj类资源的 数目为K。
4)需求矩阵Need。
这也是一个n×m的矩阵,用以表示每一个进程尚需的各类资源数。如果Need[i,j]=K,则表示进程i还需要Rj类资源K个,方能完成其任务。
Need[i,j]=Max[i,j]-Allocation[i,j]
import java.util.Scanner;
public class Bank {
static int available[]=new int[3]; //资源数
static int max[][]=new int[5][3]; //最大需求
static int allocation[][]=new int[5][3]; //分配
static int need[][]=new int[5][3]; //需求
static int request[]=new int[3]; //存放请求
Scanner scanner=new Scanner(System.in);
int thread; //线程
//用户输入要申请资源的线程和申请的资源,并进行判断
public void getThread(){
System.out.println("请输入申请资源的线程");
int thread=scanner.nextInt(); //线程
if(thread<0||thread>4){
System.out.println("该线程不存在,请重新输入");
getThread();
}else{
this.thread=thread;
System.out.println("请输入申请的资源(三种,若某种资源不申请则填0)");
for(int i=0;i<3;i++){
request[i]=scanner.nextInt();
}
if(request[0]>need[thread][0]||request[1]>need[thread][1]||request[2]>need[thread][2]){
System.out.println(thread+"线程申请的资源超出其需要的资源,请重新输入");
getThread();
}else{
if(request[0]> available[0]||request[1]> available[1]||request[2]> available[2]){
System.out.println(thread+"线程申请的资源大于系统资源,请重新输入");
getThread();
}
}
changeData(thread);
if(check(thread)){
getThread();
}else{
recoverData(thread);
getThread();
}
}
}
//thread线程请求响应后,试探性分配资源
public void changeData(int thread){
for(int i=0;i<3;i++){
//重新调整系统资源数
available[i]-=request[i];
//计算各个线程拥有资源
allocation[thread][i]+=request[i];
//重新计算需求
need[thread][i]-=request[i];
}
}
//安全性检查为通过,分配失败时调用,恢复系统原状
public void recoverData(int thread){
for(int i=0;i<3;i++){
//重新调整系统资源数
available[i]+=request[i];
//计算各个线程拥有资源
allocation[thread][i]-=request[i];
//重新计算需求
need[thread][i]+=request[i];
}
}
//对线程thread安全性检查
public boolean check(int thread){
boolean finish[]=new boolean[5];
int work[]=new int[3];
int queue[]=new int[5]; //由于存放安全队列
int k=0;//安全队列下标
int j; //要判断的线程
int i;
//是否分配的标志
for(i=0;i<5;i++)
finish[i]=false;
j=thread;
for(i=0;i<3;i++){
work[i]=available[i];
}
while(j<5){
for( i=0;i<3;i++){
if(finish[j]){
j++;
break;
}else if(need[j][i]>work[i]){
j++;
break;
}else if(i==2){
for(int m=0;m<3;m++){
work[m]+=allocation[j][m];
}
finish[j]=true;
queue[k]=j;
k++;
j=0; //从最小线程再开始判断
}
}
}
//判断是否都属于安全状态
for(int p=0;p<5;p++){
if(finish[p]=false){
System.out.println("系统不安全,资源申请失败");
return false;
}
}
System.out.println("资源申请成功,安全队列为:");
for(int q=0;q<5;q++){
System.out.println(queue[q]);
}
return true;
}
//打印need和available,需要时调用
public void showData(){
System.out.println("need");
for(int i=0;i<5;i++){
for(int j=0;j<3;j++){
System.out.print(need[i][j]+" ");
}
}
System.out.println("available");
for(int j=0;j<3;j++){
System.out.print(available[j]+" ");
}
}
public static void main(String[] args) {
Bank bk=new Bank();
bk.getThread();
}
}