大数据面试题汇总(持续更新)
一、基础考点
1、简单概括安装hadoop的步骤
1).创建 hadoop 帐户。
2).setup.改 IP。
3).安装 java,并修改/etc/profile 文件,配置 java 的环境变量。
4).修改 Host 文件域名。
5).安装 SSH,配置无**通信。
6).解压 hadoop。
7).配置 conf 文件下 hadoop-env.sh、core-site.sh、mapre-site.sh、hdfs-site.sh。
8).配置 hadoop 的环境变量。
9).Hadoop namenode -format
10).Start-all.sh
2、简单概述hadoop中的角色的分配以及功能
Namenode:负责管理元数据的信息
SecondName:做namenode冷备份,对于namenode的机器当掉后能快速切换到制定的Secondname上
DateNode:主要做储存数据的。
JobTracker:管理任务,并把任务分配到taskTasker
TaskTracker:执行任务的
3、你认为用java , streaming , pipe 方式开发map/reduce,各有什么优点
开发mapReduce只用过java与hive,不过使用java开发mapreduce显得笨拙,效率也慢,基于java慢的原因于是hive,这样就方便了查询与设计。
4、简单概述hadoop的join的方法
Hadoop 常用的jion有reduce side join , map side join , SemiJoin 不过reduce side join 与 map side join 比较常用,不过都是比较耗时的。
5、hbase宕机了如何处理?
HBase的RegionServer宕机超过一定时间后,HMaster会将其所管理的region重新分布到其他活动的RegionServer上,由于数据和日志都持久在HDFS中,该操作不会导致数据丢失。所以数据的一致性和安全性是有保障的。但是重新分配的region需要根据日志恢复原RegionServer中的内存MemoryStore表,这会导致宕机的region在这段时间内无法对外提供服务。而一旦重分布,宕机的节点重新启动后就相当于一个新的RegionServer加入集群,为了平衡,需要再次将某些region分布到该server。 因此,Region Server的内存表memstore如何在节点间做到更高的可用,是HBase的一个较大的挑战。
6、“jps”命令的用处?
这个命令可以检查Namenode、Datanode、Task Tracker、 Job Tracker是否正常工作。
7、hdfs写流程
流程:
8、读流程
- client链接namenode存数据
- namenode记录一条数据位置信息(元数据),告诉client存哪。
- client用hdfs的api将数据块(默认是64M)存储到datanode上。
- datanode将数据水平备份。并且备份完将反馈client。
- client通知namenode存储块完毕。
- namenode将元数据同步到内存中。
- 另一块循环上面的过程。
流程:
- client链接namenode,查看元数据,找到数据的存储位置。
- client通过hdfs的api并发读取数据。
- 关闭连接。
9、Mapreduce和Spark的都是并行计算,那么他们有什么相同和区别
答:两者都是用mr模型来进行并行计算:
1) hadoop的一个作业称为job,job里面分为map task和reduce task,每个task都是在自己的进程中运行的,当task结束时,进程也会结束。
2) spark用户提交的任务成为application,一个application对应一个sparkcontext,app中存在多个job,每触发一次action操作就会产生一个job。这些job可以并行或串行执行,每个job中有多个stage,stage是shuffle过程中DAGSchaduler通过RDD之间的依赖关系划分job而来的,每个stage里面有多个task,组成taskset有TaskSchaduler分发到各个executor中执行,executor的生命周期是和app一样的,即使没有job运行也是存在的,所以task可以快速启动读取内存进行计算。
3) hadoop的job只有map和reduce操作,表达能力比较欠缺而且在mr过程中会重复的读写hdfs,造成大量的io操作,多个job需要自己管理关系。 spark的迭代计算都是在内存中进行的,API中提供了大量的RDD操作如join,groupby等,而且通过DAG图可以实现良好的容错。
10、RDD机制?
答:rdd分布式弹性数据集,简单的理解成一种数据结构,是spark框架上的通用货币。 所有算子都是基于rdd来执行的,不同的场景会有不同的rdd实现类,但是都可以进行互相转换。 rdd执行过程中会形成dag图,然后形成lineage保证容错性等。 从物理的角度来看rdd存储的是block和node之间的映射。
11、hadoop的shuffle过程
1)Map端的shuffle
Map端会处理输入数据并产生中间结果,这个中间结果会写到本地磁盘,而不是HDFS。每个Map的输出会先写到内存缓冲区中,当写入的数据达到设定的阈值时,系统将会启动一个线程将缓冲区的数据写到磁盘,这个过程叫做spill。
在spill写入之前,会先进行二次排序,首先根据数据所属的partition进行排序,然后每个partition中的数据再按key来排序。partition的目是将记录划分到不同的Reducer上去,以期望能够达到负载均衡,以后的Reducer就会根据partition来读取自己对应的数据。接着运行combiner(如果设置了的话),combiner的本质也是一个Reducer,其目的是对将要写入到磁盘上的文件先进行一次处理,这样,写入到磁盘的数据量就会减少。最后将数据写到本地磁盘产生spill文件(spill文件保存在{mapred.local.dir}指定的目录中,Map任务结束后就会被删除)。
最后,每个Map任务可能产生多个spill文件,在每个Map任务完成前,会通过多路归并算法将这些spill文件归并成一个文件。至此,Map的shuffle过程就结束了。
2)Reduce端的shuffle
Reduce端的shuffle主要包括三个阶段,copy、sort(merge)和reduce。
首先要将Map端产生的输出文件拷贝到Reduce端,但每个Reducer如何知道自己应该处理哪些数据呢?因为Map端进行partition的时候,实际上就相当于指定了每个Reducer要处理的数据(partition就对应了Reducer),所以Reducer在拷贝数据的时候只需拷贝与自己对应的partition中的数据即可。每个Reducer会处理一个或者多个partition,但需要先将自己对应的partition中的数据从每个Map的输出结果中拷贝过来。
接下来就是sort阶段,也成为merge阶段,因为这个阶段的主要工作是执行了归并排序。从Map端拷贝到Reduce端的数据都是有序的,所以很适合归并排序。最终在Reduce端生成一个较大的文件作为Reduce的输入。
最后就是Reduce过程了,在这个过程中产生了最终的输出结果,并将其写到HDFS上。
12、fsimage和edit的区别?
大家都知道namenode与secondary namenode 的关系,当他们要进行数据同步时叫做checkpoint时就用到了fsimage与edit,fsimage是保存最新的元数据的信息,当fsimage数据到一定的大小事会去生成一个新的文件来保存元数据的信息,这个新的文件就是edit,edit会回滚最新的数据。
13、datanode 首次加入 cluster 的时候,如果 log 报告不兼容文件版本,那需要namenode 执行格式化操作,这样处理的原因是?
1)这样处理是不合理的,因为那么 namenode 格式化操作,是对文件系统进行格式化,namenode 格式化时清空 dfs/name 下空两个目录下的所有文件,之后,会在目录 dfs.name.dir 下创建文件。
2)文本不兼容,有可能时 namenode 与 datanode 的 数据里的 namespaceID、clusterID 不一致,找到两个 ID 位置,修改为一样即可解决。
二、实例分析
1、海量日志数据,提取出某日访问百度次数最多的那个IP。
解决方案:首先是将这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。
2、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。
解决方案:顺序读文件中,对于每个词x,取hash(x)%5000,然后按照该值存到5000个小文件(记为x0,x1,...x4999)中。这样每个文件大概是200k左右。如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100个词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。
3、有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。
方案1: 顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。 找一台内存在2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件(记为)。
对这10个文件进行归并排序(内排序与外排序相结合)。
方案2: 一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。
方案3: 与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。
4、 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url。
方案1:可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。通读文件a,对每个url求取hash(url)%1000,然后根据所取得的值将url分别存储到1000个小文件(记为a0,a1,...,a999)中。这样每个小文件的大约为300M。通读文件b,采取和a相同的方式将url分别存储到1000小文件(记为b0,b1,...,b999)。这样处理后,所有可能相同的url都在对应的小文件(a0vsb0,a1vsb1,...,a999vsb999)中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。
方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。
5、腾讯面试题:给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?
方案1:申请512M的内存,一个bit位代表一个unsigned int值。读入40亿个数,设置相应的bit位,读入要查询的数,查看相应bit位是否为1,为1表示存在,为0表示不存在。
方案2:因为2^32为40亿多,所以给定一个数可能在,也可能不在其中;这里我们把40亿个数中的每一个用32位的二进制来表示假设这40亿个数开始放在一个文件中。然后将这40亿个数分成两类: 1.最高位为0 2.最高位为1 并将这两类分别写入到两个文件中,其中一个文件中数的个数<=20亿,而另一个>=20亿(这相当于折半了);与要查找的数的最高位比较并接着进入相应的文件再查找再然后把这个文件为又分成两类: 1.次最高位为0 2.次最高位为1,并将这两类分别写入到两个文件中,其中一个文件中数的个数<=10亿,而另一个>=10亿(这相当于折半了); 与要查找的数的次最高位比较并接着进入相应的文件再查找。 ....... 以此类推,就可以找到了,而且时间复杂度为O(logn),方案2完。
附:这里,再简单介绍下,位图方法: 使用位图法判断整形数组是否存在重复 判断集合中存在重复是常见编程任务之一,当集合中数据量比较大时我们通常希望少进行几次扫描,这时双重循环法就不可取了。位图法比较适合于这种情况,它的做法是按照集合中最大元素max创建一个长度为max+1的新数组,然后再次扫描原数组,遇到几就给新数组的第几位置上1,如遇到5就给新数组的第六个元素置1,这样下次再遇到5想置位时发现新数组的第六个元素已经是1了,这说明这次的数据肯定和以前的数据存在着重复。这种给新数组初始化时置零其后置一的做法类似于位图的处理方法故称位图法。它的运算次数最坏的情况为2N。如果已知数组的最大值即能事先给新数组定长的话效率还能提高一倍。
【参考文章】
1、https://blog.****.net/wj1314250/article/details/80186642