TensorFlow学习 理解batchsize及其大小的影响

之前面试过程中被问到过两个问题

(1)深度学习中batch size的大小对训练过程的影响是什么样的?

(2)有些时候不可避免地要用超大batch,比如人脸识别,可能每个batch要有几万甚至几十万张人脸图像,训练过程中超大batch有什么优缺点,如何尽可能地避免超大batch带来的负面影响?

-------------------------------面试版回答-------------------------------

不考虑Batch Normalization的情况下(这种情况我们之后会在bn的文章里专门探讨),先给个自己当时回答的答案吧(相对来说学究一点)

(1) 不考虑bn的情况下,batch size的大小决定了深度学习训练过程中的完成每个epoch所需的时间每次迭代(iteration)之间梯度的平滑程度。(感谢评论区的韩飞同学提醒,batchsize只能说影响完成每个epoch所需要的时间,决定也算不上吧。根本原因还是CPU,GPU算力吧。瓶颈如果在CPU,例如随机数据增强,batch size越大有时候计算的越慢。

对于一个大小为N的训练集,如果每个epoch中mini-batch的采样方法采用最常规的N个样本每个都采样一次,设mini-batch大小为b,那么每个epoch所需的迭代次数(正向+反向)为 TensorFlow学习 理解batchsize及其大小的影响 , 因此完成每个epoch所需的时间大致也随着迭代次数的增加而增加

由于目前主流深度学习框架处理mini-batch的反向传播时,默认都是先将每个mini-batch中每个instance得到的loss平均化之后再反求梯度,也就是说每次反向传播的梯度是对mini-batch中每个instance的梯度平均之后的结果,所以b的大小决定了相邻迭代之间的梯度平滑程度,b太小,相邻mini-batch间的差异相对过大,那么相邻两次迭代的梯度震荡情况会比较严重,不利于收敛b越大,相邻mini-batch间的差异相对越小,虽然梯度震荡情况会比较小,一定程度上利于模型收敛,但如果b极端大,相邻mini-batch间的差异过小,相邻两个mini-batch的梯度没有区别了,整个训练过程就是沿着一个方向蹭蹭蹭往下走,很容易陷入到局部最小值出不来

总结下来:batch size过小,花费时间多,同时梯度震荡严重,不利于收敛;batch size过大,不同batch的梯度方向没有任何变化,容易陷入局部极小值。

(2)(存疑,只是突发奇想)如果硬件资源允许,想要追求训练速度使用超大batch,可以采用一次正向+多次反向的方法,避免模型陷入局部最小值。即使用超大epoch做正向传播,在反向传播的时候,分批次做多次反向转播,比如将一个batch size为64的batch,一次正向传播得到结果,instance级别求loss(先不平均),得到64个loss结果;反向传播的过程中,分四次进行反向传播,每次取16个instance的loss求平均,然后进行反向传播,这样可以做到在节约一定的训练时间,利用起硬件资源的优势的情况下,避免模型训练陷入局部最小值。

-------------------------------通俗版回答-------------------------------

那么我们可以把第一个问题简化为一个小时候经常玩的游戏:

深度学习训练过程: 贴鼻子

训练样本:负责指挥的小朋友们(观察角度各不一样)

模型:负责贴的小朋友

模型衡量指标:最终贴的位置和真实位置之间的距离大小

<img src="https://pic1.zhimg.com/v2-5f021c193716cd7ba9dfe2012941c1b4_b.jpg" data-caption="" data-size="normal" data-rawwidth="574" data-rawheight="391" class="origin_image zh-lightbox-thumb" width="574" data-original="https://pic1.zhimg.com/v2-5f021c193716cd7ba9dfe2012941c1b4_r.jpg"/>TensorFlow学习 理解batchsize及其大小的影响

由于每个小朋友站的位置各不一样,所以他们对鼻子位置的观察也各不一样。(训练样本的差异性),这时候假设小明是负责贴鼻子的小朋友,小朋友A、B、C、D、E是负责指挥的同学(A, B站在图的右边,C,D, E站在左边),这时候小明如果采用:

  1. 每次随机询问一个同学,那么很容易出现,先询问到了A,A说向左2cm,再问C,C说向右5cm,然后B,B说向左4cm,D说向右3cm,这样每次指挥的差异都比较大,结果调过来调过去,没什么进步。
  2. 每次随机询问两个同学,每次取询问的意见的平均,比如先问到了(A, C),A说向左2cm,C说向右5cm,那就取个均值,向右1.5cm。然后再问(B, D),这样的话减少了极端情况(前后两次迭代差异巨大)这种情况的发生,能更好更快的完成游戏。
  3. 每次全问一遍,然后取均值,这样每次移动的方向都是所有人决定的均值,这样的话,最后就是哪边的小朋友多最终结果就被很快的拉向哪边了。(梯度方向不变,限于极小值)

在合理范围内,增大 Batch_Size 有何好处?

  • 内存利用率提高了,大矩阵乘法的并行化效率提高。
  • 跑完一次 epoch(全数据集)所需的迭代次数减少,对于相同数据量的处理速度进一步加快。
  • 在一定范围内,一般来说 Batch_Size 越大,其确定的下降方向越准,引起训练震荡越小。

盲目增大 Batch_Size 有何坏处?

  • 内存利用率提高了,但是内存容量可能撑不住了。 跑完一次
  • epoch(全数据集)所需的迭代次数减少,要想达到相同的精度,其所花费的时间大大增加了,从而对参数的修正也就显得更加缓慢。
  • Batch_Size 增大到一定程度,其确定的下降方向已经基本不再变化。