微波晶体管功率放大器简介

                               微波晶体管功率放大器

 

       前言:微波晶体管功率放大器工作状态与低频晶体管功率放大器一样,有甲类、甲乙类、乙类及丙类四种工作状态,分类的方法也相同。不同的工作状态适用不同的需要。匹配电路元件可以是集中参数、半集中参数及分布参数。

 

一、双极型晶体管功率放大器

       BJT功率放大器按BJT不同的直流工作点划分为甲类、乙类、甲乙类和丙类四种工作状态,图7-10是BJT的伏安特性曲线。图中1号区域是发生雪崩击穿的区域;2号区域的电流较小,使信号截止;3号区域的电压较低,使信号饱和;4号区域的工作电流已超出极限工作电流;5号区域的功耗已超出额定功耗,中间部分是线性工作区。

        微波晶体管功率放大器简介

       图7-11是BJT功率放大器四种工作状态的偏置点。

        微波晶体管功率放大器简介

 

 1.1、甲类工作状态

       如图7-12所示,功率放大器在信号周期内始终存在工作电流,即导通角为360°,此时,功率放大器处于甲类工作状态。

        微波晶体管功率放大器简介

  • 甲类功率放大器的优点是线性好、失真小,较好的噪声系数,在1dB压缩点以下具有几乎不失真的脉冲响应,在不同输出电平时的通带起伏小和在不同输出电平时的相位和增益不变。
  • 它的缺点是效率不高、较大的热损耗和尺寸大。甲类功率放大器适用于行波管替代器,扫频仪、综合器、信号放大级、电视信号放大器、短脉冲放大器和干扰发射机等。

 

 1.2、乙类工作状态

       功率放大器在信号周期内只有半个周期存在工作电流,即导通角θ为180°,乙类功率放大器在静态时,BJT几乎没有静态电流,即管耗接近零。为了减小失真,通常采用互补对称电路,它的效率在70%以上,每个功率管的最大功耗是电路最大输出功率的20%,通常用此关系作为乙类互补对称功率放大器选择功率管的依据。

        微波晶体管功率放大器简介

       上述关系是在理想情况下计算得到的,因此在实际电路中被选管子的功耗应大于20%。由于乙类互补对称功率放大器工作在零偏置状态。而BJT导通要求一定的基极电流iB,因此,当输入信号低于某一值时,管子不通导,即在信号周期内出现一段不工作区,使信号失真,这种现象称为交越失真,如图7-14所示。

        微波晶体管功率放大器简介

     

       为了减小和克服交越失真,通常使晶体管具有较小的正偏置,使集电极静态电流是最大设计值的1%~10%。此时,功率放大器处于甲乙类工作状态,如图7-15所示,导通角θ略大 。

        微波晶体管功率放大器简介

 

 1.3、甲乙类工作状态

       甲乙类功放的优点是输出功率功率较大,可以高达几千瓦,有较高的效率,尺寸紧凑, 线性也比较好,失真小,工作温度较低,因而可靠性也高,用得比较广泛。但它的不足之处是动态范围有限,一般从15dB到30dB,交调失真特性也不够好,在低射频输入时通带的起伏较大。甲乙类功率放大器适用于电子干扰发射机、功率放大器、发射机、高功率行波管替代器和电视放大等。

 

 1.4、丙类工作状态

       如图7-16所示,功率放大器在信号周期内存在工作电流的时间不到半个周期, 即导通角θ 小于180°。此时,功率放大器处于丙类工作状态。

        微波晶体管功率放大器简介

       丙类功放的优点是效率非常高,尺寸紧凑,输出功率高,可达几千瓦,工作温度比乙类还要低,可靠性较高,在要求失真不严的系统中得到广泛应用。它的最大缺点是动态范围非常窄,只能在0dB到6dB范围内变化,如果信号减小到额定电平以下,
丙类功放将呈现急剧变化的趋势。此外,丙类功放不能用于调幅信号的放大。丙类功率放大器适用于对流层散射通信系统、电子干扰机、行波管替代器、战术空军导航系统和雷达系统。

 

       成功地设计固态微波功率放大器的关键是设计阻抗匹配网络。在任何一个微波功率放大器设计中,错误的阻抗匹配将使电路不稳定,同时会使电路效率降低和非线性失真加大。在设计功率放大器匹配电路时,匹配电路应同时满足匹配、谐波衰减、带宽、小驻波、线性及实际尺寸等多项要求。当有源器件一旦确定后,可以被选用的匹配电路是相当多的,企图把可能采用的匹配电路列成完整的设计表格几乎是不现实的。设计单级功率放大器主要是设计输入匹配电路和输出匹配电路;设计两级功率放大器除了要设计输入匹配电路和输出匹配电路外,还需要设计级间匹配电路。