向量化简的算法

向量化简的算法
这种理解方式:
(h(x1)-y1)* x1
把(h(x1)-y1)看成标量,x1看成矢量:
1 * [1 2 3]

(h(x1)-y1)* x1
+(h(x2)-y2)* x2
[1 2] * [1 2 3; 4 5 6] 分解后 [1 2] * [1;4] [1 2] * [2;5] [1 2] * [3;6]
假设:(h(x1)-y1)=1 (h(x2)-y2)=2 x1 = [1 2 3] x2 = [4 5 6]

另一种理解比较复杂:

( h ( x n ) − y ) ∗ x 1 = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 ] ∗ [ 11 , 12 , 13 , 14 , 15 , 16 , 17 ] T (h(x_n)-y)* x_1 = [1,2,3,4,5,6,7] * [11,12,13,14,15,16,17] ^T hxnyx1=[1,2,3,4,5,6,7][11,12,13,14,15,16,17]T
( h ( x n ) − y ) ∗ x 2 = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 ] ∗ [ 21 , 22 , 23 , 24 , 25 , 26 , 27 ] T (h(x_n)-y)* x_2 = [1,2,3,4,5,6,7] * [21,22,23,24,25,26,27] ^T hxnyx2=[1,2,3,4,5,6,7][21,22,23,24,25,26,27]T

合起来就是:
( h ( x n ) − y ) ∗ x n = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 ] ∗ [ 11 , 12 , 13 , 14 , 15 , 16 , 17 ; 21 , 22 , 23 , 24 , 25 , 26 , 27 ] T (h(x_n)-y)* x_n = [1,2,3,4,5,6,7] * [11,12,13,14,15,16,17;21,22,23,24,25,26,27] ^T hxnyxn=[1,2,3,4,5,6,7][11,12,13,14,15,16,17;21,22,23,24,25,26,27]T

(h(xn)-y) = [1 2 3 4 5 6 7]
x1 = [11 12 13 14 15 16 17]
x2 =[21 22 23 24 25 26 27]

花间前的笨方法比较耗时。
https://blog.****.net/xujie126/article/details/100772693