OpenCV 彩色图像的直方图均衡化、平滑和锐化 C++
前面已经介绍过灰度图像的平滑和锐化,下面使用均值平滑和拉普拉斯锐化处理彩色图像。
平滑结果:
平滑差异和锐化结果
代码实现:
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace cv;
int main() {
Mat src = imread("lena.jpg");
imshow("src", src);
std::vector<Mat> yuv;
Mat split_img;
cvtColor(src, split_img, COLOR_BGR2YCrCb);
split(split_img, yuv );
blur(yuv[0], yuv[0], Size(5, 5));
merge( yuv, split_img);
cvtColor(split_img, split_img, COLOR_YCrCb2BGR);
imshow( "split_img", split_img);
Mat dst;
blur(src, dst, Size(5, 5));
namedWindow("box");
imshow("box", dst);
Mat kernel = (Mat_<float>(3, 3) << 0, -1, 0, -1, 4, -1, 0, -1, 0);
Mat laplace_dst;
filter2D(src, laplace_dst, CV_8UC3, kernel);
imshow( "lap_dst", laplace_dst + src);
imshow( "laplace", laplace_dst);
Mat sub = dst - split_img;
imshow( "sub", sub*20);
waitKey(0);
return 0;
}
直方图均衡化亮度和原图像对比,木桌子的纹理已经看出来了;
代码实现:
/*
* color_equalizehist.cpp
*
* Created on: May 20, 2018
* Author: cyf
*/
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <stdio.h>
using namespace cv;
using namespace std;
void histogram_calculation( const Mat &Image, Mat &histoImage )
{
// Create the histogram for 256 bins
// The number of possibles values
int histSize= 255;
/// Set the ranges ( for B,G,R) )
float range[] = { 0, 256 } ;
const float* histRange = { range };
bool uniform = true;
bool accumulate = false;
Mat b_hist, g_hist, r_hist;
vector<Mat> bgr_planes;
split( Image, bgr_planes );
calcHist( &bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize,
&histRange, uniform, accumulate );
calcHist( &bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize,
&histRange, uniform, accumulate );
calcHist( &bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize,
&histRange, uniform, accumulate );
// Draw the histogram
// We go to draw lines for each channel
int hist_w= 512;
int hist_h= 400;
int bin_w= cvRound((float)hist_w/(float)histSize);
// Create image with gray base
Mat histImage( hist_h, hist_w, CV_8UC3, Scalar(0,0,0) );
// Normalize the histograms to height of image
normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
for( int i=1; i< histSize; i++){
line( histImage,
Point( bin_w*(i-1), hist_h-cvRound(b_hist.at<float>(i-1) ) ),
Point( bin_w*(i), hist_h-cvRound(b_hist.at<float>(i) ) ),
Scalar(255,0,0), 2, 8, 0
);
line( histImage,
Point( bin_w*(i-1), hist_h-cvRound(g_hist.at<float>(i-1) ) ),
Point( bin_w*(i), hist_h-cvRound(g_hist.at<float>(i) ) ),
Scalar(0,255,0), 2, 8, 0
);
line( histImage,
Point( bin_w*(i-1), hist_h-cvRound(r_hist.at<float>(i-1) ) ),
Point( bin_w*(i), hist_h-cvRound(r_hist.at<float>(i) ) ),
Scalar(0,0,255), 2, 8, 0
);
}
// imshow("Histogram", histImage);
histoImage = histImage;
}
int main( int argc, char *argv[] )
{
Mat src, ycrcb, imageq;
Mat histImage;
//get src image
src = imread( "637.tif" );
if( src.empty() ){
fprintf( stderr, "Error image, can't load\n" );
exit(-1);
}
resize(src,src,Size(), 0.5, 0.5);
imshow( "Source image", src );
//calculate src channel equalize
histogram_calculation( src, histImage);
imshow( "Color Image Histogram", histImage );
vector<Mat> yuv;
cvtColor( src, ycrcb, COLOR_BGR2YCrCb);
split( ycrcb, yuv );
//equalize Y
equalizeHist( yuv[0], yuv[0] );
//merge channels
merge( yuv, imageq);
cvtColor( imageq, imageq, COLOR_YCrCb2BGR );
imshow( "Equalized image", imageq );
//calculate every channel histogram
histogram_calculation( imageq, histImage );
imshow( "Equalized color image histogram", histImage );
waitKey(0);
return 0;
}