Flume+Kafka+Storm+Hbase+HDSF+Poi整合
Flume+Kafka+Storm+Hbase+HDSF+Poi整合
需求:
针对一个网站,我们需要根据用户的行为记录日志信息,分析对我们有用的数据。
举例:这个网站www.hongten.com(当然这是一个我虚拟的电商网站),用户在这个网站里面可以有很多行为,比如注册,登录,查看,点击,双击,购买东西,加入购物车,添加记录,修改记录,删除记录,评论,登出等一系列我们熟悉的操作。这些操作都被记录在日志信息里面。我们要对日志信息进行分析。
本文中,我们对购买东西和加入购物车两个行为进行分析。然后生成相应的报表,这样我们可以通过报表查看用户在什么时候喜欢购买东西,什么时候喜欢加入购物车,从而,在相应的时间采取行动,激烈用户购买东西,推荐商品给用户加入购物车(加入购物车,这属于潜在购买用户)。
毕竟网站盈利才是我们希望达到的目的,对吧。
1.抽象用户行为
// 用户的action public static final String[] USER_ACTION = { "Register", "Login", "View", "Click", "Double_Click", "Buy", "Shopping_Car", "Add", "Edit", "Delete", "Comment", "Logout" };
2.日志格式定义
115.19.62.102 海南 2018-12-20 1545286960749 1735787074662918890 www.hongten.com Edit
27.177.45.84 新疆 2018-12-20 1545286962255 6667636903937987930 www.hongten.com Delete
176.54.120.96 宁夏 2018-12-20 1545286962256 6988408478348165495 www.hongten.com Comment
175.117.33.187 辽宁 2018-12-20 1545286962257 8411202446705338969 www.hongten.com Shopping_Car
17.67.62.213 天津 2018-12-20 1545286962258 7787584752786413943 www.hongten.com Add
137.81.41.9 海南 2018-12-20 1545286962259 6218367085234099455 www.hongten.com Shopping_Car
125.187.107.57 山东 2018-12-20 1545286962260 3358658811146151155 www.hongten.com Double_Click
104.167.205.87 内蒙 2018-12-20 1545286962261 2303468282544965471 www.hongten.com Shopping_Car
64.106.149.83 河南 2018-12-20 1545286962262 8422202443986582525 www.hongten.com Delete
138.22.156.183 浙江 2018-12-20 1545286962263 7649154147863130337 www.hongten.com Shopping_Car
41.216.103.31 河北 2018-12-20 1545286962264 6785302169446728008 www.hongten.com Shopping_Car
132.144.93.20 广东 2018-12-20 1545286962265 6444575166009004406 www.hongten.com Add
日志格式:
//log fromat String log = ip + "\t" + address + "\t" + d + "\t" + timestamp + "\t" + userid + "\t" + Common.WEB_SITE + "\t" + action;
3.系统架构
4.报表样式
由于我采用的是随机生成数据,所有,我们看到的结果呈现线性增长
这里我只是实现了一个小时的报表,当然,也可以做一天,一个季度,全年,三年,五年的报表,可以根据实际需求实现即可。
5.组件分布情况
我总共搭建了4个节点node1,node2,node3,node4(注: 4个节点上面都要有JDK)
Zookeeper安装在node1,node2,nod3
Hadoop集群在node1,node2,nod3,node4
Hbase集群在node1,node2,nod3,node4
Flume安装在node2
Kafka安装在node1,node2,node3
Storm安装在node1,node2,node3
6.具体实现
6.1.配置Flume
--从node2 cd flumedir vi flume2kafka --node2配置如下 a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = avro a1.sources.r1.bind = node2 a1.sources.r1.port = 41414 # Describe the sink a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink a1.sinks.k1.topic = all_my_log a1.sinks.k1.brokerList = node1:9092,node2:9092,node3:9092 a1.sinks.k1.requiredAcks = 1 a1.sinks.k1.batchSize = 20 # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000000 a1.channels.c1.transactionCapacity = 10000 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 :wq
6.2.启动Zookeeper
--关闭防火墙node1,node2,node3,node4 service iptables stop --启动Zookeeper,在node1,node2,node3 zkServer.sh start
6.3.启动Kafka
--启动kafka --分别进入node1,node2,node3 cd /root/kafka/kafka_2.10-0.8.2.2 ./start-kafka.sh
6.4.启动Flume服务
--进入node2,启动 cd /root/flumedir flume-ng agent -n a1 -c conf -f flume2kafka -Dflume.root.logger=DEBUG,console
6.5.产生日志信息并写入到Flume
运行java 代码,产生日志信息并写入到Flume服务器
package com.b510.big.data.flume.client; import java.nio.charset.Charset; import java.text.SimpleDateFormat; import java.util.Date; import java.util.Random; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.TimeUnit; import org.apache.flume.Event; import org.apache.flume.EventDeliveryException; import org.apache.flume.api.RpcClient; import org.apache.flume.api.RpcClientFactory; import org.apache.flume.event.EventBuilder; /** * @author Hongten * * 功能: 模拟产生用户日志信息,并且向Flume发送数据 */ public class FlumeClient { public static void main(String[] args) { ExecutorService exec = Executors.newCachedThreadPool(); exec.execute(new GenerateDataAndSend2Flume()); exec.shutdown(); } } class GenerateDataAndSend2Flume implements Runnable { FlumeRPCClient flumeRPCClient; static Random random = new Random(); GenerateDataAndSend2Flume() { // 初始化RPC客户端 flumeRPCClient = new FlumeRPCClient(); flumeRPCClient.init(Common.FLUME_HOST_NAME, Common.FLUME_PORT); } @Override public void run() { while (true) { Date date = new Date(); SimpleDateFormat simpleDateFormat = new SimpleDateFormat(Common.DATE_FORMAT_YYYYDDMM); String d = simpleDateFormat.format(date); Long timestamp = new Date().getTime(); // ip地址生成 String ip = random.nextInt(Common.MAX_IP_NUMBER) + "." + random.nextInt(Common.MAX_IP_NUMBER) + "." + random.nextInt(Common.MAX_IP_NUMBER) + "." + random.nextInt(Common.MAX_IP_NUMBER); // ip地址对应的address(这里是为了构造数据,并没有按照真实的ip地址,找到对应的address) String address = Common.ADDRESS[random.nextInt(Common.ADDRESS.length)]; Long userid = Math.abs(random.nextLong()); String action = Common.USER_ACTION[random.nextInt(Common.USER_ACTION.length)]; // 日志信息构造 // example : 199.80.45.117 云南 2018-12-20 1545285957720 3086250439781555145 www.hongten.com Buy String data = ip + "\t" + address + "\t" + d + "\t" + timestamp + "\t" + userid + "\t" + Common.WEB_SITE + "\t" + action; //System.out.println(data); // 往Flume发送数据 flumeRPCClient.sendData2Flume(data); try { TimeUnit.MICROSECONDS.sleep(random.nextInt(1000)); } catch (InterruptedException e) { flumeRPCClient.cleanUp(); System.out.println("interrupted exception : " + e); } } } } class FlumeRPCClient { private RpcClient client; private String hostname; private int port; public void init(String hostname, int port) { this.hostname = hostname; this.port = port; this.client = getRpcClient(hostname, port); } public void sendData2Flume(String data) { Event event = EventBuilder.withBody(data, Charset.forName(Common.CHAR_FORMAT)); try { client.append(event); } catch (EventDeliveryException e) { cleanUp(); client = null; client = getRpcClient(hostname, port); } } public RpcClient getRpcClient(String hostname, int port) { return RpcClientFactory.getDefaultInstance(hostname, port); } public void cleanUp() { // Close the RPC connection client.close(); } } // 所有的常量定义 class Common { public static final String CHAR_FORMAT = "UTF-8"; public static final String DATE_FORMAT_YYYYDDMM = "yyyy-MM-dd"; // this is a test web site public static final String WEB_SITE = "www.hongten.com"; // 用户的action public static final String[] USER_ACTION = { "Register", "Login", "View", "Click", "Double_Click", "Buy", "Shopping_Car", "Add", "Edit", "Delete", "Comment", "Logout" }; public static final int MAX_IP_NUMBER = 224; // ip所对应的地址 public static String[] ADDRESS = { "北京", "天津", "上海", "广东", "重庆", "河北", "山东", "河南", "云南", "山西", "甘肃", "安徽", "福建", "黑龙江", "海南", "四川", "贵州", "宁夏", "新疆", "湖北", "湖南", "山西", "辽宁", "吉林", "江苏", "浙江", "青海", "江西", "西藏", "内蒙", "广西", "香港", "澳门", "台湾", }; // Flume conf public static final String FLUME_HOST_NAME = "node2"; public static final int FLUME_PORT = 41414; }
6.6.监听Kafka
--进入node3,启动kafka消费者 cd /home/kafka-2.10/bin ./kafka-console-consumer.sh --zookeeper node1,node2,node3 --from-beginning --topic all_my_log
运行效果:
168.208.193.207 安徽 2018-12-20 1545287646527 5462770148222682599 www.hongten.com Login
103.143.79.127 新疆 2018-12-20 1545287646529 3389475301916412717 www.hongten.com Login
111.208.80.39 山东 2018-12-20 1545287646531 535601622597096753 www.hongten.com Shopping_Car
105.30.86.46 四川 2018-12-20 1545287646532 7825340079790811845 www.hongten.com Login
205.55.33.74 新疆 2018-12-20 1545287646533 4228838365367235561 www.hongten.com Logout
34.44.60.134 安徽 2018-12-20 1545287646536 702584874247456732 www.hongten.com Double_Click
154.169.15.145 广东 2018-12-20 1545287646537 1683351753576425036 www.hongten.com View
126.28.192.28 湖南 2018-12-20 1545287646538 8319814684518483148 www.hongten.com Edit
5.140.156.73 台湾 2018-12-20 1545287646539 7432409906375230025 www.hongten.com Logout
72.175.210.95 西藏 2018-12-20 1545287646540 5233707593244910849 www.hongten.com View
121.25.190.25 广西 2018-12-20 1545287646541 268200251881841673 www.hongten.com Buy
6.7.在Kafka创建Topic
--进入node1,创建一个topic:filtered_log --设置3个partitions --replication-factor=3 ./kafka-topics.sh --zookeeper node1,node2,node3 --create --topic filtered_log --partitions 3 --replication-factor 3
6.8.Storm清洗数据
- Storm从Kafka消费数据
- Storm对数据进行筛选(Buy-已经购买,Shopping_Car-潜在购买)
- Storm把筛选的数据放入到Kafka
package com.b510.big.data.storm.process; import java.util.ArrayList; import java.util.List; import java.util.Properties; import storm.kafka.KafkaSpout; import storm.kafka.SpoutConfig; import storm.kafka.StringScheme; import storm.kafka.ZkHosts; import storm.kafka.bolt.KafkaBolt; import storm.kafka.bolt.mapper.FieldNameBasedTupleToKafkaMapper; import storm.kafka.bolt.selector.DefaultTopicSelector; import backtype.storm.Config; import backtype.storm.LocalCluster; import backtype.storm.StormSubmitter; import backtype.storm.generated.AlreadyAliveException; import backtype.storm.generated.InvalidTopologyException; import backtype.storm.spout.SchemeAsMultiScheme; import backtype.storm.topology.BasicOutputCollector; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.TopologyBuilder; import backtype.storm.topology.base.BaseBasicBolt; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Tuple; import backtype.storm.tuple.Values; public class LogFilterTopology { public static void main(String[] args) { ZkHosts zkHosts = new ZkHosts(Common.ZOOKEEPER_QUORUM); //Spout从'filtered_log' topic里面获取数据 SpoutConfig spoutConfig = new SpoutConfig(zkHosts, Common.ALL_MY_LOG_TOPIC, Common.ZOOKEEPER_ROOT, Common.ZOOKEEPER_ID); List<String> zkServers = new ArrayList<>(); for (String host : zkHosts.brokerZkStr.split(",")) { zkServers.add(host.split(":")[0]); } spoutConfig.zkServers = zkServers; spoutConfig.zkPort = Common.ZOOKEEPER_PORT; spoutConfig.forceFromStart = true; spoutConfig.socketTimeoutMs = 60 * 60 * 1000; spoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme()); // 创建KafkaSpout KafkaSpout kafkaSpout = new KafkaSpout(spoutConfig); TopologyBuilder builder = new TopologyBuilder(); // Storm从Kafka消费数据 builder.setSpout(Common.KAFKA_SPOUT, kafkaSpout, 3); // Storm对数据进行筛选(Buy-已经购买,Shopping_Car-潜在购买) builder.setBolt(Common.FILTER_BOLT, new FilterBolt(), 8).shuffleGrouping(Common.KAFKA_SPOUT); // 创建KafkaBolt @SuppressWarnings({ "unchecked", "rawtypes" }) KafkaBolt kafkaBolt = new KafkaBolt().withTopicSelector(new DefaultTopicSelector(Common.FILTERED_LOG_TOPIC)).withTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper()); // Storm把筛选的数据放入到Kafka builder.setBolt(Common.KAFKA_BOLT, kafkaBolt, 2).shuffleGrouping(Common.FILTER_BOLT); Properties props = new Properties(); props.put("metadata.broker.list", Common.STORM_METADATA_BROKER_LIST); props.put("request.required.acks", Common.STORM_REQUEST_REQUIRED_ACKS); props.put("serializer.class", Common.STORM_SERILIZER_CLASS); Config conf = new Config(); conf.put("kafka.broker.properties", props); conf.put(Config.STORM_ZOOKEEPER_SERVERS, zkServers); if (args == null || args.length == 0) { // 本地方式运行 LocalCluster localCluster = new LocalCluster(); localCluster.submitTopology("storm-kafka-topology", conf, builder.createTopology()); } else { // 集群方式运行 conf.setNumWorkers(3); try { StormSubmitter.submitTopology(args[0], conf, builder.createTopology()); } catch (AlreadyAliveException | InvalidTopologyException e) { System.out.println("error : " + e); } } } } class FilterBolt extends BaseBasicBolt { private static final long serialVersionUID = 1L; @Override public void execute(Tuple input, BasicOutputCollector collector) { String logStr = input.getString(0); // 只针对我们感兴趣的关键字进行过滤 // 这里我们过滤包含'Buy', 'Shopping_Car'的日志信息 if (logStr.contains(Common.KEY_WORD_BUY) || logStr.contains(Common.KEY_WORD_SHOPPING_CAR)) { collector.emit(new Values(logStr)); } } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields(FieldNameBasedTupleToKafkaMapper.BOLT_MESSAGE)); } } class Common { public static final String ALL_MY_LOG_TOPIC = "all_my_log"; public static final String FILTERED_LOG_TOPIC = "filtered_log"; public static final String DATE_FORMAT_YYYYDDMMHHMMSS = "yyyyMMddHHmmss"; public static final String DATE_FORMAT_HHMMSS = "HHmmss"; public static final String DATE_FORMAT_HHMMSS_DEFAULT_VALUE = "000001"; public static final String HBASE_ZOOKEEPER_LIST = "node1:2888,node2:2888,node3:2888"; public static final int ZOOKEEPER_PORT = 2181; public static final String ZOOKEEPER_QUORUM = "node1:" + ZOOKEEPER_PORT + ",node2:" + ZOOKEEPER_PORT + ",node3:" + ZOOKEEPER_PORT + ""; public static final String ZOOKEEPER_ROOT = "/MyKafka"; public static final String ZOOKEEPER_ID = "MyTrack"; public static final String KAFKA_SPOUT = "kafkaSpout"; public static final String FILTER_BOLT = "filterBolt"; public static final String PROCESS_BOLT = "processBolt"; public static final String HBASE_BOLT = "hbaseBolt"; public static final String KAFKA_BOLT = "kafkaBolt"; // Storm Conf public static final String STORM_METADATA_BROKER_LIST = "node1:9092,node2:9092,node3:9092"; public static final String STORM_REQUEST_REQUIRED_ACKS = "1"; public static final String STORM_SERILIZER_CLASS = "kafka.serializer.StringEncoder"; // key word public static final String KEY_WORD_BUY = "Buy"; public static final String KEY_WORD_SHOPPING_CAR = "Shopping_Car"; //hbase public static final String TABLE_USER_ACTION = "t_user_actions"; public static final String COLUMN_FAMILY = "cf"; //间隔多少秒写入Hbase一次 public static final int WRITE_RECORD_TO_TABLE_PER_SECOND = 1; public static final int TABLE_MAX_VERSION = (60/WRITE_RECORD_TO_TABLE_PER_SECOND) * 60 * 24; }
6.9.监听Kafka
--进入node3,启动kafka消费者 cd /home/kafka-2.10/bin ./kafka-console-consumer.sh --zookeeper node1,node2,node3 --from-beginning --topic filtered_log
效果:
87.26.135.185 黑龙江 2018-12-20 1545290594658 7290881731606227972 www.hongten.com Shopping_Car
60.96.96.38 青海 2018-12-20 1545290594687 6935901257286057015 www.hongten.com Shopping_Car
43.159.110.193 江苏 2018-12-20 1545290594727 7096698224110515553 www.hongten.com Shopping_Car
21.103.139.11 山西 2018-12-20 1545290594693 7805867078876194442 www.hongten.com Shopping_Car
139.51.213.184 广东 2018-12-20 1545290594729 8048796865619113514 www.hongten.com Buy
58.213.148.89 河北 2018-12-20 1545290594708 5176551342435592748 www.hongten.com Buy
36.205.221.116 湖南 2018-12-20 1545290594715 4484717918039766421 www.hongten.com Shopping_Car
135.194.103.53 北京 2018-12-20 1545290594769 4833011508087432349 www.hongten.com Shopping_Car
180.21.100.66 贵州 2018-12-20 1545290594752 5270357330431599426 www.hongten.com Buy
167.71.65.70 山西 2018-12-20 1545290594790 275898530145861990 www.hongten.com Buy
125.51.21.199 宁夏 2018-12-20 1545290594814 3613499600574777198 www.hongten.com Buy
6.10.Storm再次消费Kafka数据处理后保存数据到Hbase
- Storm再次从Kafka消费数据
- Storm对数据进行统计(Buy-已经购买人数,Shopping_Car-潜在购买人数)
- Storm将数据写入到Hbase
package com.b510.big.data.storm.process; import java.io.IOException; import java.text.SimpleDateFormat; import java.util.ArrayList; import java.util.Date; import java.util.List; import java.util.Map; import java.util.Properties; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.HColumnDescriptor; import org.apache.hadoop.hbase.HTableDescriptor; import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.client.HBaseAdmin; import org.apache.hadoop.hbase.client.HConnection; import org.apache.hadoop.hbase.client.HConnectionManager; import org.apache.hadoop.hbase.client.HTableInterface; import org.apache.hadoop.hbase.client.Put; import storm.kafka.KafkaSpout; import storm.kafka.SpoutConfig; import storm.kafka.StringScheme; import storm.kafka.ZkHosts; import backtype.storm.Config; import backtype.storm.LocalCluster; import backtype.storm.StormSubmitter; import backtype.storm.generated.AlreadyAliveException; import backtype.storm.generated.InvalidTopologyException; import backtype.storm.spout.SchemeAsMultiScheme; import backtype.storm.task.TopologyContext; import backtype.storm.topology.BasicOutputCollector; import backtype.storm.topology.IBasicBolt; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.TopologyBuilder; import backtype.storm.topology.base.BaseBasicBolt; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Tuple; import backtype.storm.tuple.Values; public class LogProcessTopology { public static void main(String[] args) { ZkHosts zkHosts = new ZkHosts(Common.ZOOKEEPER_QUORUM); //Spout从'filtered_log' topic里面获取数据 SpoutConfig spoutConfig = new SpoutConfig(zkHosts, Common.FILTERED_LOG_TOPIC, Common.ZOOKEEPER_ROOT, Common.ZOOKEEPER_ID); List<String> zkServers = new ArrayList<>(); for (String host : zkHosts.brokerZkStr.split(",")) { zkServers.add(host.split(":")[0]); } spoutConfig.zkServers = zkServers; spoutConfig.zkPort = Common.ZOOKEEPER_PORT; spoutConfig.forceFromStart = true; spoutConfig.socketTimeoutMs = 60 * 60 * 1000; spoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme()); // 创建KafkaSpout KafkaSpout kafkaSpout = new KafkaSpout(spoutConfig); TopologyBuilder builder = new TopologyBuilder(); // Storm再次从Kafka消费数据 builder.setSpout(Common.KAFKA_SPOUT, kafkaSpout, 3); // Storm对数据进行统计(Buy-已经购买人数,Shopping_Car-潜在购买人数) builder.setBolt(Common.PROCESS_BOLT, new ProcessBolt(), 3).shuffleGrouping(Common.KAFKA_SPOUT); // Storm将数据写入到Hbase builder.setBolt(Common.HBASE_BOLT, new HbaseBolt(), 3).shuffleGrouping(Common.PROCESS_BOLT); Properties props = new Properties(); props.put("metadata.broker.list", Common.STORM_METADATA_BROKER_LIST); props.put("request.required.acks", Common.STORM_REQUEST_REQUIRED_ACKS); props.put("serializer.class", Common.STORM_SERILIZER_CLASS); Config conf = new Config(); conf.put("kafka.broker.properties", props); conf.put(Config.STORM_ZOOKEEPER_SERVERS, zkServers); if (args == null || args.length == 0) { // 本地方式运行 LocalCluster localCluster = new LocalCluster(); localCluster.submitTopology("storm-kafka-topology", conf, builder.createTopology()); } else { // 集群方式运行 conf.setNumWorkers(3); try { StormSubmitter.submitTopology(args[0], conf, builder.createTopology()); } catch (AlreadyAliveException | InvalidTopologyException e) { System.out.println("error : " + e); } } } } class ProcessBolt extends BaseBasicBolt { private static final long serialVersionUID = 1L; @Override public void execute(Tuple input, BasicOutputCollector collector) { String logStr = input.getString(0); if (logStr != null) { String infos[] = logStr.split("\\t"); //180.21.100.66 贵州 2018-12-20 1545290594752 5270357330431599426 www.hongten.com Buy collector.emit(new Values(infos[2], infos[6])); } } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("date", "user_action")); } } class HbaseBolt implements IBasicBolt { private static final long serialVersionUID = 1L; HBaseDAO hBaseDAO = null; SimpleDateFormat simpleDateFormat = null; SimpleDateFormat simpleDateFormatHHMMSS = null; int userBuyCount = 0; int userShoopingCarCount = 0; //这里要考虑避免频繁写入数据到hbase int writeToHbaseMaxNum = Common.WRITE_RECORD_TO_TABLE_PER_SECOND * 1000; long begin = System.currentTimeMillis(); long end = 0; @SuppressWarnings("rawtypes") @Override public void prepare(Map map, TopologyContext context) { hBaseDAO = new HBaseDAOImpl(); simpleDateFormat = new SimpleDateFormat(Common.DATE_FORMAT_YYYYDDMMHHMMSS); simpleDateFormatHHMMSS = new SimpleDateFormat(Common.DATE_FORMAT_HHMMSS); hBaseDAO.createTable(Common.TABLE_USER_ACTION, new String[]{Common.COLUMN_FAMILY}, Common.TABLE_MAX_VERSION); } @Override public void execute(Tuple input, BasicOutputCollector collector) { // 如果时间是第二天的凌晨1s // 需要对count做清零处理 //不过这里的判断不是很准确,因为在此时,可能前一天的数据还没有处理完 if (simpleDateFormatHHMMSS.format(new Date()).equals(Common.DATE_FORMAT_HHMMSS_DEFAULT_VALUE)) { userBuyCount = 0; userShoopingCarCount = 0; } if (input != null) { // base one ProcessBolt.declareOutputFields() String date = input.getString(0); String userAction = input.getString(1); if (userAction.equals(Common.KEY_WORD_BUY)) { //同一个user在一天之内可以重复'Buy'动作 userBuyCount++; } if (userAction.equals(Common.KEY_WORD_SHOPPING_CAR)) { userShoopingCarCount++; } end = System.currentTimeMillis(); if ((end - begin) > writeToHbaseMaxNum) { System.out.println("hbase_key: " + Common.KEY_WORD_BUY + "_" + date + " , userBuyCount: " + userBuyCount + ", userShoopingCarCount :" + userShoopingCarCount); //往hbase中写入数据 String quailifer = simpleDateFormat.format(new Date()); hBaseDAO.insert(Common.TABLE_USER_ACTION , Common.KEY_WORD_BUY + "_" + date, Common.COLUMN_FAMILY, new String[] { quailifer }, new String[] { "{user_buy_count:" + userBuyCount + "}" } ); hBaseDAO.insert(Common.TABLE_USER_ACTION , Common.KEY_WORD_SHOPPING_CAR + "_" + date, Common.COLUMN_FAMILY, new String[] { quailifer }, new String[] { "{user_shopping_car_count:" + userShoopingCarCount + "}" } ); begin = System.currentTimeMillis(); } } } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { } @Override public Map<String, Object> getComponentConfiguration() { return null; } @Override public void cleanup() { } } interface HBaseDAO { public void createTable(String tableName, String[] columnFamilys, int maxVersion); public void insert(String tableName, String rowKey, String family, String quailifer[], String value[]); } class HBaseDAOImpl implements HBaseDAO { HConnection hConnection = null; static Configuration conf = null; public HBaseDAOImpl() { conf = new Configuration(); conf.set("hbase.zookeeper.quorum", Common.HBASE_ZOOKEEPER_LIST); try { hConnection = HConnectionManager.createConnection(conf); } catch (IOException e) { e.printStackTrace(); } } public void createTable(String tableName, String[] columnFamilys, int maxVersion) { try { HBaseAdmin admin = new HBaseAdmin(conf); if (admin.tableExists(tableName)) { System.err.println("table existing in hbase."); } else { HTableDescriptor tableDesc = new HTableDescriptor(TableName.valueOf(tableName)); for (String columnFamily : columnFamilys) { HColumnDescriptor hColumnDescriptor = new HColumnDescriptor(columnFamily); hColumnDescriptor.setMaxVersions(maxVersion); tableDesc.addFamily(hColumnDescriptor); } admin.createTable(tableDesc); System.err.println("table is created."); } admin.close(); } catch (Exception e) { e.printStackTrace(); } } @Override public void insert(String tableName, String rowKey, String family, String quailifer[], String value[]) { HTableInterface table = null; try { table = hConnection.getTable(tableName); Put put = new Put(rowKey.getBytes()); for (int i = 0; i < quailifer.length; i++) { String col = quailifer[i]; String val = value[i]; put.add(family.getBytes(), col.getBytes(), val.getBytes()); } table.put(put); System.err.println("save record successfuly."); } catch (Exception e) { e.printStackTrace(); } finally { try { table.close(); } catch (IOException e) { e.printStackTrace(); } } } }
Storm处理逻辑:
1.每秒向Hbase写入数据
2.明天凌晨会重置数据
如果,我们一直运行上面的程序,那么,系统就会一直往Hbase里面写入数据,那么这样,我们就可以采集到我们生成报表的数据了。
那么下面就是报表实现
6.11.读取Hbase数据通过POI生成Excel Report
- 读取Hbase数据
- 通过POI生成Excel报表
package com.b510.big.data.poi; import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream; import java.util.ArrayList; import java.util.List; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.Cell; import org.apache.hadoop.hbase.CellUtil; import org.apache.hadoop.hbase.client.Get; import org.apache.hadoop.hbase.client.HConnection; import org.apache.hadoop.hbase.client.HConnectionManager; import org.apache.hadoop.hbase.client.HTableInterface; import org.apache.hadoop.hbase.client.Result; import org.apache.poi.xssf.usermodel.XSSFCell; import org.apache.poi.xssf.usermodel.XSSFSheet; import org.apache.poi.xssf.usermodel.XSSFWorkbook; public class ReportUtil { public static void main(String[] args) throws Exception { String year = "2018"; String month = "12"; String day = "21"; String hour = "14"; generateReport(year, month, day, hour); } private static void generateReport(String year, String month, String day, String hour) { HBaseDAO hBaseDAO = new HBaseDAOImpl(); // format: yyyyMMddHH String begin = year + month + day + hour; String[] split = generateQuailifers(begin); List<Integer> userBuyCountList = getData(hBaseDAO, year, month, day, split, Common.KEY_WORD_BUY); List<Integer> userShoppingCarCountList = getData(hBaseDAO, year, month, day, split, Common.KEY_WORD_SHOPPING_CAR); //System.err.println(userBuyCountList.size()); //System.err.println(userShoppingCarCountList.size()); writeExcel(year, month, day, hour, userBuyCountList, userShoppingCarCountList); } private static void writeExcel(String year, String month, String day, String hour, List<Integer> userBuyCountList, List<Integer> userShoppingCarCountList) { try { File file = new File(Common.REPORT_TEMPLATE); InputStream in = new FileInputStream(file); XSSFWorkbook wb = new XSSFWorkbook(in); XSSFSheet sheet = wb.getSheetAt(0); if (sheet != null) { XSSFCell cell = null; cell = sheet.getRow(0).getCell(0); cell.setCellValue("One Hour Report-" + year + "-" + month + "-" + day + " From " + hour + ":00 To " + hour + ":59"); putData(userBuyCountList, sheet, 3); putData(userShoppingCarCountList, sheet, 7); FileOutputStream out = new FileOutputStream(Common.REPORT_ONE_HOUR); wb.write(out); out.close(); System.err.println("done."); } } catch (Exception e) { System.err.println("Exception" + e); } } private static void putData(List<Integer> userBuyCountList, XSSFSheet sheet, int rowNum) { XSSFCell cell; if (userBuyCountList != null && userBuyCountList.size() > 0) { for (int i = 0; i < userBuyCountList.size(); i++) { cell = sheet.getRow(rowNum).getCell(i + 1); cell.setCellValue(userBuyCountList.get(i)); } } } private static List<Integer> getData(HBaseDAO hBaseDAO, String year, String month, String day, String[] split, String preKey) { List<Integer> list = new ArrayList<Integer>(); Result rs = hBaseDAO.getOneRowAndMultiColumn(Common.TABLE_USER_ACTION, preKey + "_" + year + "-" + month + "-" + day, split); for (Cell cell : rs.rawCells()) { String value = new String(CellUtil.cloneValue(cell)).split(":")[1].trim(); value = value.substring(0, value.length() - 1); list.add(Integer.valueOf(value)); } return list; } private static String[] generateQuailifers(String begin) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < 60;) { if (i == 0 || i == 5) { sb.append(begin).append("0").append(i).append("00").append(","); } else { sb.append(begin).append(i).append("00").append(","); } i = i + 5; } sb.append(begin).append("5959"); String sbStr = sb.toString(); String[] split = sbStr.split(","); return split; } } interface HBaseDAO { Result getOneRowAndMultiColumn(String tableName, String rowKey, String[] cols); } class HBaseDAOImpl implements HBaseDAO { HConnection hConnection = null; static Configuration conf = null; public HBaseDAOImpl() { conf = new Configuration(); conf.set("hbase.zookeeper.quorum", Common.HBASE_ZOOKEEPER_LIST); try { hConnection = HConnectionManager.createConnection(conf); } catch (IOException e) { e.printStackTrace(); } } @Override public Result getOneRowAndMultiColumn(String tableName, String rowKey, String[] cols) { HTableInterface table = null; Result rsResult = null; try { table = hConnection.getTable(tableName); Get get = new Get(rowKey.getBytes()); for (int i = 0; i < cols.length; i++) { get.addColumn(Common.COLUMN_FAMILY.getBytes(), cols[i].getBytes()); } rsResult = table.get(get); } catch (Exception e) { e.printStackTrace(); } finally { try { table.close(); } catch (IOException e) { e.printStackTrace(); } } return rsResult; } } class Common { // report public static final String REPORT_TEMPLATE = "./resources/report.xlsx"; public static final String REPORT_ONE_HOUR = "./resources/one_report.xlsx"; public static final String DATE_FORMAT_YYYYDDMMHHMMSS = "yyyyMMddHHmmss"; public static final String HBASE_ZOOKEEPER_LIST = "node1:2888,node2:2888,node3:2888"; // key word public static final String KEY_WORD_BUY = "Buy"; public static final String KEY_WORD_SHOPPING_CAR = "Shopping_Car"; // hbase public static final String TABLE_USER_ACTION = "t_user_actions"; public static final String COLUMN_FAMILY = "cf"; }
7.源码下载
Source Code:Flume_Kafka_Storm_Hbase_Hdfs_Poi_src.zip
相应的Jar文件,由于so big,自己根据import *信息加入。
8.总结
学习Big Data一段时间了,通过自己的学习和摸索,实现自己想要的应用,还是很有成就感的哈....当然,踩地雷也是一种不错的体验...:)
========================================================
More reading,and english is important.
I'm Hongten
大哥哥大姐姐,觉得有用打赏点哦!你的支持是我最大的动力。谢谢。
Hongten博客排名在100名以内。粉丝过千。
Hongten出品,必是精品。
E | [email protected]xmail.com B | http://www.cnblogs.com/hongten
========================================================
转载于:https://www.cnblogs.com/hongten/p/hongten_flume_kafka_storm_hbase_hdfs_poi.html