Flume面试题

1.Flume 采集数据会丢失吗?

不会,Channel 存储可以存储在 File 中,数据传输自身有事务。

2.Flume 与 Kafka 的选取?

采集层主要可以使用 Flume、Kafka 两种技术。

Flume:Flume 是管道流方式,提供了很多的默认实现,让用户通过参数部署,及扩展 API。

Kafka:Kafka 是一个可持久化的分布式的消息队列。

Kafka 是一个非常通用的系统。你可以有许多生产者和很多的消费者共享多个主题Topics。相比之下,Flume 是一个专用工具被设计为旨在往 HDFS,HBase 发送数据。它对HDFS 有特殊的优化,并且集成了 Hadoop 的安全特性。所以,Cloudera 建议如果数据被多个系统消费的话,使用 kafka;如果数据被设计给 Hadoop 使用,使用 Flume。正如你们所知 Flume 内置很多的 source 和 sink 组件。然而,Kafka 明显有一个更小的生产消费者生态系统,并且 Kafka 的社区支持不好。希望将来这种情况会得到改善,但是目前:使用 Kafka 意味着你准备好了编写你自己的生产者和消费者代码。如果已经存在的 Flume Sources 和 Sinks 满足你的需求,并且你更喜欢不需要任何开发的系统,请使用 Flume。Flume 可以使用拦截器实时处理数据。这些对数据屏蔽或者过量是很有用的。Kafka 需要外部的流处理系统才能做到。

Kafka 和 Flume 都是可靠的系统,通过适当的配置能保证零数据丢失。然而,Flume 不支持副本事件。于是,如果 Flume 代理的一个节点奔溃了,即使使用了可靠的文件管道方式,你也将丢失这些事件直到你恢复这些磁盘。如果你需要一个高可靠行的管道,那么使用Kafka 是个更好的选择。

Flume 和 Kafka 可以很好地结合起来使用。如果你的设计需要从 Kafka 到 Hadoop 的流数据,使用 Flume 代理并配置 Kafka 的 Source 读取数据也是可行的:你没有必要实现自己的消费者。你可以直接利用Flume 与HDFS 及HBase 的结合的所有好处。你可以使用ClouderaManager 对消费者的监控,并且你甚至可以添加拦截器进行一些流处理。

3.数据怎么采集到 Kafka,实现方式?

使用官方提供的 flumeKafka 插件,插件的实现方式是自定义了 flume 的 sink,将数据从channle 中取出,通过 kafka 的producer 写入到 kafka 中,可以自定义分区等。

4.flume 管道内存,flume 宕机了数据丢失怎么解决?

1)Flume 的 channel 分为很多种,可以将数据写入到文件。
2)防止非首个 agent 宕机的方法数可以做集群或者主备

5. flume 和 kafka 采集日志区别,采集日志时中间停了,怎么记录之前的日志?

Flume 采集日志是通过流的方式直接将日志收集到存储层,而 kafka 是将缓存在 kafka集群,待后期可以采集到存储层。
Flume 采集中间停了,可以采用文件的方式记录之前的日志,而 kafka 是采用 offset 的方式记录之前的日志。

6.flume 有哪些组件,flume 的 source、channel、sink 具体是做什么的?

Flume面试题
1)source:用于采集数据,Source 是产生数据流的地方,同时 Source 会将产生的数据
流传输到 Channel,这个有点类似于 Java IO 部分的 Channel。
2)channel:用于桥接 Sources 和 Sinks,类似于一个队列。
3)sink:从 Channel 收集数据,将数据写到目标源(可以是下一个 Source,也可以是 HDFS
或者 HBase)。

7.为什么使用Flume?
Flume面试题
8.Flume组成架构?Flume面试题
关于flume事务
flume要尽可能的保证数据的安全性,其在source推送数据到channel以及sink从channel拉取数据时都是以事务方式进行的。因为在agent内的两次数据传递间都会涉及到数据的传送、从数据上游删除数据的问题;就比如sink从channel拉取数据并提交到数据下游之后需要从channel中删除已获取到的批次数据,其中跨越了多个原子事件,故而需要以事务的方式将这些原子事件进一步绑定在一起,以便在其中某个环节出错时进行回滚防止数据丢失。所以在选用file channel时一般来说是不会丢失数据的。

9.FlumeAgent内部原理?
Flume面试题
10.Flume Event 是数据流的基本单元

它由一个装载数据的字节数组(byte payload)和一系列可选的字符串属性来组成(可选头部).
Flume面试题
11.Flume agent

Flume source 消耗从类似于 web 服务器这样的外部源传来的 events.

外部数据源以一种 Flume source 能够认识的格式发送 event 给 Flume source.

Flume source 组件可以处理各种类型、各种格式的日志数据,包括 avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy.

flume source 是负责接收数据到 Flume Agent 的组件

2. Flume channel

当 Flume source 接受到一个 event 的时, Flume source 会把这个 event 存储在一个或多个 channel 中.

Channel 是连接Source和Sink的组件, 是位于 Source 和 Sink 之间的数据缓冲区。

Flume channel 使用被动存储机制. 它存储的数据的写入是靠 Flume source 来完成的, 数据的读取是靠后面的组件 Flume sink 来完成的.

Channel 是线程安全的,可以同时处理几个 Source 的写入操作和几个 Sink 的读取操作。

Flume 自带两种 Channel:

Memory Channel

Memory Channel是内存中的队列。

Memory Channel在不需要关心数据丢失的情景下适用。

如果需要关心数据丢失,那么Memory Channel就不应该使用,因为程序死亡、机器宕机或者重启都会导致数据丢失。

File Channel。

File Channel将所有事件写到磁盘。

因此在程序关闭或机器宕机的情况下不会丢失数据。

还可以有其他的 channel: 比如 JDBC channel.

3. Flume sink
Sink 不断地轮询 Channel 中的事件且批量地移除它们,并将这些事件批量写入到存储或索引系统、或者发送到另一个Flume Agent。

Sink 是完全事务性的。

在从 Channel 批量删除数据之前,每个 Sink 用 Channel 启动一个事务。批量事件一旦成功写出到存储系统或下一个Flume Agent,Sink 就利用 Channel 提交事务。事务一旦被提交,该 Channel 从自己的内部缓冲区删除事件。如果写入失败,将缓冲区takeList中的数据归还给Channel。

Sink组件目的地包括hdfs、logger、avro、thrift、ipc、file、null、HBase、solr、自定义。

12.你是如何实现Flume数据传输的监控的

使用第三方框架Ganglia实时监控Flume。

13.flume 调优 :

source :
1 ,增加 source 个数,可以增大 source 读取能力。
2 ,具体做法 : 如果一个目录下生成的文件过多,可以将它拆分成多个目录。每个目录都配置一个 source 。
3 ,增大 batchSize : 可以增大一次性批处理的 event 条数,适当调大这个参数,可以调高 source 搬运数据到 channel 的性能。
channel :
1 ,memory :性能好,但是,如果发生意外,可能丢失数据。
2 ,使用 file channel 时,dataDirs 配置多个不同盘下的目录可以提高性能。
3 ,transactionCapacity 需要大于 source 和 sink 的 batchSize 参数
sink :
增加 sink 个数可以增加消费 event 能力

14. 知道 Flume 的 Channel 是啥吗

Channel 被设计为 Event 中转临时缓冲区,存储 Source 收集并且没有被 Sink 读取的 Event,为平衡 Source 收集和 Sink 读取的速度,可视为 Flume 内部的消息队列。

Channel 线程安全并且具有事务性,支持 Source 写失败写,和 Sink 读失败重复读的操作。常见的类型包括 Memory Channel,File Channel,Kafka Channel。

15 介绍一下 Memory Channel
读写速度快,但是存储数据量小,Flume 进程挂掉、服务器停机或者重启都会导致数据丢失。资源充足、不关心数据丢失的场景下可以用。

16 说说 File Channel
将 event 写入磁盘文件,与 Memory Channel 相比存储容量大,无数据丢失风险。File Channel 数据存储路径可以配置多磁盘文件路径,通过磁盘并行写入提高 File Channel 性能。Flume 将 Event 顺序写入到 File Channel 文件的末尾。可以在配置文件中通过设置 maxFileSize 参数配置数据文件大小,当被写入的文件大小达到上限的时候,Flume 会重新创建新的文件存储写入 Event。当一个已经关闭的只读数据文件的 Event 被读取完成,并且 Sink 已经提交读取完成的事务,则 Flume 把存储该数据的文件删除。

17 说说 Kafka Channel
Memory Channel 有很大的丢数据风险,而且容量一般,File Channel 虽然能缓存更多的消息,但如果缓存下来的消息还没写入 Sink,此时 Agent 出现故障则 File Channel 中的消息一样不能被继续使用,直到该 Agent 恢复。而 Kafka Channel 容量大,容错能力强。

有了 Kafka Channel 可以在日志收集层只配置 Source 组件和 Kafka 组件,不需要再配置 Sink 组件,减少了日志收集层启动的进程数,有效降低服务器内存、磁盘等资源的使用率。而日志汇聚层,可以只配置 Kafka Channel 和 Sink,不需要再配置 Source。

kafka.consumer.auto.offset.reset,当 Kafka 中没有 Consumer 消费的初始偏移量或者当前偏移量在 Kafka 中不存在(比如数据已经被删除)情况下 Consumer 选择从 Kafka 拉取消息的方式,earliest 表示从最早的偏移量开始拉取,latest 表示从最新的偏移量开始拉取,none 表示如果没有发现该 Consumer 组之前拉取的偏移量则抛出异常。

18 介绍一下 Kafka 几种 Sink
HDFS Sink: 将 Event 写入 HDFS 文件存储,能够有效长期存储大量数据。
Kafka Sink: Flume 通过 Kafka Sink 将 Event 写入到 Kafka 中的主题,其他应用通过订阅主题消费数据。kafka.producer.acks 可以设置 Producer 端发送消息到 Broker 之后不需要等待 Broker 返回成功送达的信号。0表示 Producer 发送消息到 Broker 之后不需要等待 Broker 返回成功送达的信号,这种方式吞吐量高,但存在丢失数据的风险。1表示 Broker 接收到消息成功写入本地 log 文件后向 Producer 返回成功 接收的信号,不需要等待所有的 Follower 全部同步完消息后再做回应,这种方式在数据丢失风险和吞吐量之间做了平衡。-1表示 Broker 接收到 Producer 的消息成功写入本地 log 并且等待所有的 Follower 成功写入本地 log 后向 Producer 返回成功接收的信号,这种方式能够保证消息不丢失,但是性能最差(层层递进)。

19 知道 Flume 的拦截器吗
Source 将 Event 写入到 Channel 之前可以使用拦截器对 Event 进行各种形式的处理,Source 和 Channel 之间可以有多个拦截器,不同拦截器使用不同的规则处理 Event,包括时间、主机、UUID、正则表达式等多种形式的拦截器。

20 介绍一下什么是选择器
Source 发送的 Event 通过 Channel 选择器来选择以哪种方式写入到 Channel 中,Flume 提供三种类型 Channel 选择器,分别是复制、复用和自定义选择器。

复制选择器: 一个 Source 以复制的方式将一个 Event 同时写入到多个 Channel 中,不同的 Sink 可以从不同的 Channel 中获取相同的 Event,比如一份日志数据同时写 Kafka 和 HDFS,一个 Event 同时写入两个 Channel,然后不同类型的 Sink 发送到不同的外部存储。
复用选择器: 需要和拦截器配合使用,根据 Event 的头信息中不同键值数据来判断 Event 应该写入哪个 Channel 中。

21 了解 Flume 的负载均衡和故障转移吗
目的是为了提高整个系统的容错能力和稳定性。简单配置就可以轻松实现,首先需要设置 Sink 组,同一个 Sink 组内有多个子 Sink,不同 Sink 之间可以配置成负载均衡或者故障转移。

22 ,事务机制 :
channel : 是位于 source 和 sink 之间的缓冲区。
1 ,flume 自带两种缓冲区,file channel 和 memory channel
2 ,file channel : 硬盘缓冲区,性能低,但是安全。系统宕机也不会丢失数据。
3 ,memory channel :内存缓冲区,性能高,但是有可能丢数据,在不关心数据有可能丢失的情况下使用。
put 事务流程 : 源将数据给管道
1 ,doPut :把数据写入临时缓冲区 putList 。
2 ,doCommit :检查 channel 内存队列是否足够合并。
3 ,doRollBack : 如果 channel 不行,我们就回滚数据。
take 事务流程 :
1 ,先将数据取到临时缓冲区 takeList。
2 ,doCommit :如果数据全部发送成功,就清除临时缓冲区。
3 ,doRollBack :如果数据发送过程中出现异常,doRollBack 将临时缓冲区的数据还给 channel 队列