jzoj5941. 【NOIP2018模拟11.01】乘(快速幂)

5941. 【NOIP2018模拟11.01】乘

Description
jzoj5941. 【NOIP2018模拟11.01】乘(快速幂)

Input
jzoj5941. 【NOIP2018模拟11.01】乘(快速幂)
Output

jzoj5941. 【NOIP2018模拟11.01】乘(快速幂)
Sample Input1:
4 3 9 6
5 8 7 7

Sample Output1:
0

Data Constraint
jzoj5941. 【NOIP2018模拟11.01】乘(快速幂)

分析:考虑 a 是定值, 而 b ≤ 10^12, 我们可以预处理 a 的 0…10^6 次方与 1 ∗ 10^6, 2 ∗ 106…106 ∗ 10^6 次方, 询问时把 b 切成两半, 拼起来就是答案. 这样询问就是 O(1) 的. 复杂度 O(q + 10^6).

代码

#include <cstdio>
#define ll long long
#define N 1000000
using namespace std;

ll a,b,p,l,m,c;
ll p1[1000005],p2[1000005];
int q,k;

ll ksm(ll x, ll y, ll p)
{
	ll base = x, r = 1;
	while (y)
	{
		if (y & 1) r = (r * base) % p;
		base = (base * base) % p;
		y /= 2;
	}
	return r;
}

int main()
{
//	freopen("pow.in","r",stdin);
//	freopen("pow.out","w",stdout);
	scanf("%lld%lld%d%d", &a, &p, &q, &k);
	scanf("%lld%lld%lld%lld", &b, &l, &m, &c);
	p1[0] = p2[0] = 1;
	for (int i = 1; i <= N; i++)
	{
		p1[i] = ksm(a, i, p);
		p2[i] = ksm(p1[i], N, p);
	}
	ll sum = 0;
	for (int i = 1; i <= q; i++)
	{
		b = ((m * b % l) + c) % l;
		sum ^= p1[b % N] * p2[b / N] % p;
		if (i % k == 0) printf("%lld\n", sum);
	}
}