Go语言竞争状态讲解
两个或者多个goroutine 有并发,就有资源竞争,如果两个或者多个 goroutine 在没有相互同步的情况下,访问某个共享的资源,比如同时对该资源进行读写时,就会处于相互竞争的状态,这就是并发中的资源竞争。竞争状态的存在是让并发程序变得复杂的地方,十分容易引起潜在的问题。对共享资源的操作必须原子化的,同一时刻只能有一个goroutine对共享资源进行读和写操作。
//演示程序中存在的竞争状态
package main
import (
"fmt"
"runtime"
"sync"
)
var (
//counter 是所有goroutine都要增加其值的变量
counter int
wg sync.WaitGroup
)
//main函数是所有go程序的入口
func main() {
//计数加2,表示等待两个goroutine
wg.Add(2)
//创建两个goroutine
go inCounter(1)
go inCounter(2)
//等待gorountine结束
wg.Wait()
fmt.Println("Final counter \n", counter)
}
func inCounter(id int) {
//在函数退出时调用Done来通知main函数工作已经完成
defer wg.Done()
for count := 0; count < 2; count++ {
//捕获 counter的值
value := counter
//当前goroutine 从线程退出,并回到队列
runtime.Gosched()
//增加本地value变量值
value++
//将该值保存回counter
counter = value
}
}
下面的代码
package main
import (
"fmt"
"runtime"
"sync"
)
var (
count int32
wg sync.WaitGroup
)
func main() {
wg.Add(2)
go incCount()
go incCount()
wg.Wait()
fmt.Println(count)
}
func incCount() {
defer wg.Done()
for i := 0; i < 2; i++ {
value := count
runtime.Gosched()
value++
count = value
}
}
这个是一个竞争的例子,程序多运行几次,结果可能是2,也可能是3,还可能是4。这个是因为count变量没有任何同步保护,所以两个goroutine都是会对其进行读写,会到知识已经计算好的结果被覆盖,以至于产生错误的结果。代码中的 runtime.Gosched() 是让当前 goroutine 暂停的意思,退回执行队列,让其他等待的 goroutine 运行,目的是为了使资源竞争的结果更明显。
下面我们来分析一下程序的运行过程,将两个 goroutine 分别假设为 g1 和 g2:
- g1 读取到 count 的值为 0;
- 然后 g1 暂停了,切换到 g2 运行,g2 读取到 count 的值也为 0;
- g2 暂停,切换到 g1,g1 对 count+1,count 的值变为 1;
- g1 暂停,切换到 g2,g2 刚刚已经获取到值 0,对其 +1,最后赋值给 count,其结果还是 1;
- 可以看出 g1 对 count+1 的结果被 g2 给覆盖了,两个 goroutine 都 +1 而结果还是 1。
通过上面的分析可以看出,之所以出现上面的问题,是因为两个 goroutine 相互覆盖结果。
通过运行结果可以看出 goroutine 8 在代码 25 行读取共享资源value := count,而这时 goroutine 7 在代码 28 行修改共享资源count = value,而这两个 goroutine 都是从 main 函数的 16、17 行通过 go 关键字启动的。
一种修正代码、消除竞争状态的办法是:使用go语言提供的锁机制,来锁住共享资源,从而保证goroutine的同步状态。
锁住共享资源
Go语言提供了传统的同步 goroutine 的机制,就是对共享资源加锁。atomic 和 sync 包里的一些函数就可以对共享的资源进行加锁操作。
原子函数
原子函数能够以很底层的加锁机制来同步访问整型变量和指针,示例代码如下所示:
package main
import (
"fmt"
"runtime"
"sync"
"sync/atomic"
)
var (
counter int64
wg sync.WaitGroup
)
func main() {
wg.Add(2)
go incCounter(1)
go incCounter(2)
wg.Wait() //等待goroutine结束
fmt.Println("Final counter:", counter)
}
func incCounter(id int) {
defer wg.Done()
for count := 0; count < 2; count++ {
atomic.AddInt64(&counter, 1) //安全的对counter加1
runtime.Gosched()
}
}
上述代码中使用了 atmoic 包的 AddInt64 函数,这个函数会同步整型值的加法,方法是强制同一时刻只能有一个 gorountie 运行并完成这个加法操作。当 goroutine 试图去调用任何原子函数时,这些 goroutine 都会自动根据所引用的变量做同步处理。另外两个有用的原子函数是 LoadInt64 和 StoreInt64。这两个函数提供了一种安全地读和写一个整型值的方式。下面是代码就使用了 LoadInt64 和 StoreInt64 函数来创建一个同步标志,这个标志可以向程序里多个 goroutine 通知某个特殊状态。
package main
import (
"fmt"
"sync"
"sync/atomic"
"time"
)
var (
shutdown int64
wg sync.WaitGroup
)
func main() {
wg.Add(2)
go doWork("A")
go doWork("B")
time.Sleep(1 * time.Second)
fmt.Println("Shutdown Now")
atomic.StoreInt64(&shutdown, 1)
wg.Wait()
}
func doWork(name string) {
defer wg.Done()
for {
fmt.Printf("Doing %s Work\n", name)\
time.Sleep(250 * time.Millisecond)
if atomic.LoadInt64(&shutdown) == 1 {
fmt.Printf("Shutting %s Down\n", name)
break
}
}
}
上面代码中 main 函数使用 StoreInt64 函数来安全地修改 shutdown 变量的值。如果哪个 doWork goroutine 试图在 main 函数调用 StoreInt64 的同时调用 LoadInt64 函数,那么原子函数会将这些调用互相同步,保证这些操作都是安全的,不会进入竞争状态。
互斥锁
另一种同步访问共享资源的方式是使用互斥锁,互斥锁这个名字来自互斥的概念。互斥锁用于在代码上创建一个临界区,保证同一时间只有一个 goroutine 可以执行这个临界代码。
package main
import (
"fmt"
"runtime"
"sync"
)
var (
counter int64
wg sync.WaitGroup
mutex sync.Mutex
)
func main() {
wg.Add(2)
go incCounter(1)
go incCounter(2)
wg.Wait()
fmt.Println("Final counter=", counter)
}
func incCounter(id int) {
defer wg.Done()
for count := 0; count < 2; count++ {
//同一时刻只允许一个goroutine进入这个临界区
mutex.Lock()
{
value := counter
runtime.Gosched()
value++
counter = value
}
mutex.Unlock() //释放锁,允许其他正在等待的goroutine进入临界区
}
}
输出:
Final counter= 4
同一时刻只有一个 goroutine 可以进入临界区。之后直到调用 Unlock 函数之后,其他 goroutine 才能进去临界区。当调用 runtime.Gosched 函数强制将当前 goroutine 退出当前线程后,调度器会再次分配这个 goroutine 继续运行。