推荐——超级详细的线段树讲解
附原文章链接:https://www.cnblogs.com/TheRoadToTheGold/p/6254255.html
数据结构——线段树
O、引例
A.给出n个数,n<=100,和m个询问,每次询问区间[l,r]的和,并输出。
一种回答:这也太简单了,O(n)枚举搜索就行了。
另一种回答:还用得着o(n)枚举,前缀和o(1)就搞定。
那好,我再修改一下题目。
B.给出n个数,n<=100,和m个操作,每个操作可能有两种:1、在某个位置加上一个数;2、询问区间[l,r]的和,并输出。
回答:o(n)枚举。
动态修改最起码不能用静态的前缀和做了。
好,我再修改题目:
C.给出n个数,n<=1000000,和m个操作,每个操作可能有两种:1、在某个位置加上一个数;2、询问区间[l,r]的和,并输出。
回答:o(n)枚举绝对超时。
再改:
D,给出n个数,n<=1000000,和m个操作,每个操作修改一段连续区间[a,b]的值
回答:从a枚举到b,一个一个改。。。。。。有点儿常识的人都知道超时
那怎么办?这就需要一种强大的数据结构:线段树。
一、基本概念
1、线段树是一棵二叉搜索树,它储存的是一个区间的信息。
2、每个节点以结构体的方式存储,结构体包含以下几个信息:
区间左端点、右端点;(这两者必有)
这个区间要维护的信息(事实际情况而定,数目不等)。
3、线段树的基本思想:二分。
4:线段树的一般结构为:
三、总结
线段树5种基本操作代码:
三、总结
线段树5种基本操作代码:
#include<cstdio>
using namespace std;
int n,p,a,b,m,x,y,ans;
struct node
{
int l,r,w,f;
}tree[400001];
inline void build(int k,int ll,int rr)//建树
{
tree[k].l=ll,tree[k].r=rr;
if(tree[k].l==tree[k].r)
{
scanf("%d",&tree[k].w);
return;
}
int m=(ll+rr)/2;
build(k*2,ll,m);
build(k*2+1,m+1,rr);
tree[k].w=tree[k*2].w+tree[k*2+1].w;
}
inline void down(int k)//标记下传
{
tree[k*2].f+=tree[k].f;
tree[k*2+1].f+=tree[k].f;
tree[k*2].w+=tree[k].f*(tree[k*2].r-tree[k*2].l+1);
tree[k*2+1].w+=tree[k].f*(tree[k*2+1].r-tree[k*2+1].l+1);
tree[k].f=0;
}
inline void ask_point(int k)//单点查询
{
if(tree[k].l==tree[k].r)
{
ans=tree[k].w;
return ;
}
if(tree[k].f) down(k);
int m=(tree[k].l+tree[k].r)/2;
if(x<=m) ask_point(k*2);
else ask_point(k*2+1);
}
inline void change_point(int k)//单点修改
{
if(tree[k].l==tree[k].r)
{
tree[k].w+=y;
return;
}
if(tree[k].f) down(k);
int m=(tree[k].l+tree[k].r)/2;
if(x<=m) change_point(k*2);
else change_point(k*2+1);
tree[k].w=tree[k*2].w+tree[k*2+1].w;
}
inline void ask_interval(int k)//区间查询
{
if(tree[k].l>=a&&tree[k].r<=b)
{
ans+=tree[k].w;
return;
}
if(tree[k].f) down(k);
int m=(tree[k].l+tree[k].r)/2;
if(a<=m) ask_interval(k*2);
if(b>m) ask_interval(k*2+1);
}
inline void change_interval(int k)//区间修改
{
if(tree[k].l>=a&&tree[k].r<=b)
{
tree[k].w+=(tree[k].r-tree[k].l+1)*y;
tree[k].f+=y;
return;
}
if(tree[k].f) down(k);
int m=(tree[k].l+tree[k].r)/2;
if(a<=m) change_interval(k*2);
if(b>m) change_interval(k*2+1);
tree[k].w=tree[k*2].w+tree[k*2+1].w;
}
int main()
{
scanf("%d",&n);//n个节点
build(1,1,n);//建树
scanf("%d",&m);//m种操作
for(int i=1;i<=m;i++)
{
scanf("%d",&p);
ans=0;
if(p==1)
{
scanf("%d",&x);
ask_point(1);//单点查询,输出第x个数
printf("%d",ans);
}
else if(p==2)
{
scanf("%d%d",&x,&y);
change_point(1);//单点修改
}
else if(p==3)
{
scanf("%d%d",&a,&b);//区间查询
ask_interval(1);
printf("%d\n",ans);
}
else
{
scanf("%d%d%d",&a,&b,&y);//区间修改
change_interval(1);
}
}
}