POJ ~ 3352 ~ Road Construction (边双联通 + 缩点)
题意
给你N个点,M条边,问最少增加多少条边可以使得整个图变为边双连通的?
思路
边-双连通求法
①先做一次dfs标记出所有的桥
②在做一次dfs找出边-双连通分量。
因为边-双连通分量是没有公共结点的,所以只要在第二次dfs的时候保证不经过桥即可。
求得边-双连通分量以后,把每个连通分量看作点,然后会形成一棵树。
若要使得任意一棵树,在增加若干条边后,变成一个双连通图,那么
至少增加的边数 =( 这棵树总度数为1的结点数 + 1 )/ 2
证明,自己画一画就能感性认知到吧
数据链接:数据
//#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <stack>
using namespace std;
const int MAXN = 1e5 + 5;
const int MAXM = 1e5 + 5;
struct Edge
{
int from, to;
Edge (int from, int to): from(from), to(to) {}
};
struct EdgeBCC//边双联通分量
{
int n, m;
int LOW[MAXN], DFN[MAXN], bccno[MAXN], dfs_clock, bcc_cnt;
bool isbridge[MAXM];
vector<Edge> edges, bridge;
vector<int> G[MAXN];
void init(int n)
{
this->n = n;
edges.clear();
for (int i = 0; i <= n; i++) G[i].clear();
}
void AddEdge (int from, int to)
{
edges.push_back(Edge(from, to));
edges.push_back(Edge(to, from));
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
int dfs(int u, int fa)
{
int lowu = DFN[u] = ++dfs_clock;
int child = 0;
bool flag = false;
for (int i = 0; i < G[u].size(); i++)
{
Edge& e = edges[G[u][i]];
int v = e.to;
if (v == fa && !flag) { flag = true; continue; }
if (!DFN[v]) //没有访问过v
{
child++;
int lowv = dfs(v, u);
lowu = min(lowu, lowv); //用后代的low函数更新自己
if (lowv > DFN[u])//桥
{
bridge.push_back(Edge(min(u, v), max(u, v)));
isbridge[G[u][i]] = isbridge[G[u][i]^1] = true;
}
}
else if (DFN[v] < DFN[u])
lowu = min(lowu, DFN[v]); //用反向边更新自己
}
LOW[u] = lowu;
return lowu;
}
void dfs2(int u)
{
bccno[u] = bcc_cnt;
for(int i = 0; i < G[u].size(); i++)
{
Edge e = edges[G[u][i]];
if(!isbridge[G[u][i]] && !bccno[e.to])
dfs2(e.to);
}
}
void find_bcc()
{
memset(DFN, 0, sizeof(DFN)), memset(LOW, 0, sizeof(LOW));
bridge.clear(), memset(bccno, 0, sizeof(bccno));
dfs_clock = bcc_cnt = 0;
for (int i = 0; i < n; i++)
if (!DFN[i]) dfs(i, -1);
for(int i = 0; i < n; i++)
if(!bccno[i]) bcc_cnt++, dfs2(i);
}
}gao;
int n, m, deg[MAXN];
int main()
{
scanf("%d%d", &n, &m);
gao.init(n);
while (m--)
{
int u, v; scanf("%d%d", &u, &v);
u--, v--;
gao.AddEdge(u, v);
}
gao.find_bcc();
for (int i = 0; i < gao.bridge.size(); i++)//遍历所有桥边
{
int u = gao.bridge[i].from, v = gao.bridge[i].to;
deg[gao.bccno[u]]++, deg[gao.bccno[v]]++;
}
int ans = 0;
for (int i = 1; i <= gao.bcc_cnt; i++)
if (deg[i] == 1) ans++;
ans = (ans+1)/2;
printf("%d\n", ans);
return 0;
}
/*
7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
*/