入门推荐系统,这25篇综述文章足够了
推荐系统,对于我们来说并不陌生,可以说无处不在。抖音的视频推荐让我们欲罢不能,淘宝的猜你喜欢令大家流连忘返,网易云的每日歌单使我们沉浸其中。可见,推荐技术已经成为了业界的流量担当、变现神器,也成为了我们的生活小助手,渗透到生活的各个方面。
推荐系统的核心是推荐算法,其通过利用用户对项目的行为数据、用户画像以及物品属性来构建推荐模型,进而对用户的未来行为进行预测。
推荐系统根据不同的分类维度可进行多种分类,以下进行举例介绍。
根据产品的存在形式可以分为:首页推荐、热门推荐和相关推荐等。
根据推荐技术的不同分为:基于内容的推荐、基于协同过滤的推荐、基于混合的推荐。
根据利用的信息不同可分为:协同过滤推荐、社会化推荐、兴趣点推荐、知识图推荐以及标签推荐等。
根据推荐任务不同可分为:评分预测和项目排序。
根据模型所利用假设不同分为:以KNN为代表的非训练的方法,以MF为代表的传统机器学习方法,以及以Wide&Deep模型为代表的深度学习推荐等。
可见推荐的形式以及种类繁多,对于刚入门的同学来说有点头疼。那么如何才能入门呢,相信最好的办法是阅读相关的综述文章(当然最好是有一定的数学基础以及背景知识)。因此本文的作用起到综述索引的效果,我也把她叫做推荐系统综述的综述(Surveys on Survey on Recommendation),将对25篇推荐系统综述归类为15种类别,希望能够对大家有一个整体的概念。然后便是选择其中一个具体细分领域进行深挖,成为该领域的佼佼者。
推荐系统综述
Adomavicius et al. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE TKDE, 2005.
Zhu et al. Research Commentary on Recommendations with Side Information: A Survey and Research Directions. Electron. Commer. Res. Appl., 2019
协同过滤综述
Su et al. A survey of collaborative filtering techniques. Advances in artificial intelligence, 2009.
Cacheda et al. Comparison of collaborative filtering algorithms: Limitations of current techniques and proposals for scalable, high-performance recommender systems. ACM TWEB, 2011.
Shi et al. Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges. ACM COMPUT SURV, 2014.
Efthalia et al. Parallel and Distributed Collaborative Filtering: A Survey. Comput. Surv., 2016.
混合推荐综述
Burke et al. Hybrid Recommender Systems: Survey and Experiments. USER MODEL USER-ADAP, 2002.
标签推荐综述
Zhang et al. Tag-aware recommender systems: a state-of-the-art survey. J COMPUT SCI TECHNOL, 2011.
社会化推荐综述
Tang et al. Social recommendation: a review. SNAM, 2013.
Yang et al. A survey of collaborative filtering based social recommender systems. COMPUT COMMUN, 2014.
Xu et al. Social networking meets recommender systems: survey. Int.J.Social Network Mining, 2015.
Liu et al. Survey of matrix factorization based recommendation methods by integrating social information. Journal of Software, 2018.
文本推荐综述
Chen et al. Recommender systems based on user reviews: the state of the art. USER MODEL USER-ADAP, 2015.
兴趣点推荐综述
Yu et al. A survey of point-of-interest recommendation in location-based social networks. In Workshops at AAAI, 2015.
跨域推荐综述
Muhammad et al. Cross Domain Recommender Systems: A Systematic Literature Review. ACM Comput. Surv, 2017.
序列推荐综述
Massimo et al. Sequence-Aware Recommender Systems. ACM Comput. Surv, 2018.
Shoujin et al. Sequential Recommender Systems: Challenges, Progress and Prospects. IJCAI, 2019.
会话推荐综述
Shoujin et al. A Survey on Session-based Recommender Systems. arXiv, 2019.
可解释推荐综述
Zhang et al. Explainable Recommendation: A Survey and New Perspectives. Found. Trends Inf. Retr., 2020.
对话推荐系统综述
Dietmar et al. A Survey on Conversational Recommender Systems. arXiv, 2020.
知识图推荐综述
Qingyu et al. A Survey on Knowledge Graph-Based Recommender Systems. arXiv, 2020.
组推荐综述
Sriharsha et al. A Survey on Group Recommender Systems. J. Intell. Inf. Syst., 2020
深度学习推荐综述
Singhal et al. Use of Deep Learning in Modern Recommendation System: A Summary of Recent Works. arXiv, 2017.
Zhang et al. Deep learning based recommender system: A survey and new perspectives. ACM Comput.Surv, 2018.
Batmaz et al. A review on deep learning for recommender systems: challenges and remedies. Artificial Intelligence Review, 2018.
https://github.com/hongleizhang/RSPapers,欢迎Star。
当你看到这的时候,相信已经对某一篇或者多篇综述文章跃跃欲看了,别着急,走进公众号后台回复【综述】即可打包享用。另外,若想一起交流推荐系统相关知识,欢迎进群。
投稿或交流学习,备注:名字-学校/公司-地区,进入RS&ML交流群。
记得备注奥
推荐阅读
喜欢的话点个在看吧????