spring-sparkstreaming-kafka10集成实现和疑难杂症解决

一.前期准备
1.开发环境
window7
eclipse
jdk1.8
2.linux环境
zookeeper-3.4.8
hadoop-2.6.4
spark-1.6.0
scala-2.10.6
kafka_2.10-0.10.1.0
各环境的安装和部署请自行准备。
二.疑难杂症
1. spark+scala+kafka版本要一致
2. org.apache.spark.SparkException: A master URL must be set in your configuration

spring-sparkstreaming-kafka10集成实现和疑难杂症解决

原因:

spring-sparkstreaming-kafka10集成实现和疑难杂症解决

SparkConf中未设置master。由于Master为cluster程序管理中心,负责接收Client提交的作业,管理Worker,并命令Worker启动Driver和Executor。
解决:
在SparkConf中设置master,本处设置为“local[2]”.

local(default) 在本地而非集群跑Spark作业,并且只有一个worker thread(所以,并事实上没有并行)
local[k] 在本地跑Spark Application,有k个worker thread
spark://HOST:PORT 连接到指定URL的standalone集群
mesos://HOST:PORT 连接到指定的Mesos集群
yarn 连接到默认的YARN集群。yarn集群在SPARK_HOME/conf/yarn-site.xml中指定
3. object not serializable (class: org.apache.kafka.clients.consumer.ConsumerRecord)

spring-sparkstreaming-kafka10集成实现和疑难杂症解决

原因:
ConsumerRecord是Kafka10版本自带的类。该类为接受kafka消息的key-value类,而异常时该类未序列化。而程序中调用JavaRdd的collect方法,而该方法需要将数据加载到内存,需要进行序列化。

spring-sparkstreaming-kafka10集成实现和疑难杂症解决

解决:
方法1:将获取数据集合的形式转化单个数据获取。

spring-sparkstreaming-kafka10集成实现和疑难杂症解决

方法2:通过kryo序列化ConsumerRecord类

spring-sparkstreaming-kafka10集成实现和疑难杂症解决


三.代码实现
1. sparkStreaming+kafka处理
package com.lm.spark;
 
import java.io.Serializable;
import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
 
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.api.java.function.VoidFunction2;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.Time;
import org.apache.spark.streaming.api.java.JavaInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;
 
@Component
public class SparkStreamingKafka implements Serializable {
 
    /**
     * 
     */
    private static final long serialVersionUID = 1L;
 
    public static Logger LOGGER = LoggerFactory.getLogger(SparkStreamingKafka.class);
 
    @Value("${spark.appname}")
    private String appName;
    @Value("${spark.master}")
    private String master;
    @Value("${spark.seconds}")
    private long second;
    @Value("${kafka.metadata.broker.list}")
    private String metadataBrokerList;
    @Value("${kafka.auto.offset.reset}")
    private String autoOffsetReset;
    @Value("${kafka.topics}")
    private String kafkaTopics;
    @Value("${kafka.group.id}")
    private String kafkaGroupId;
 
    public void processSparkStreaming() throws InterruptedException {
        // 1.配置sparkconf,必须要配置master
        SparkConf conf = new SparkConf().setAppName(appName).setMaster(master);
        conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");
        conf.set("spark.kryo.registrator", "com.lm.kryo.MyRegistrator");
 
        // 2.根据sparkconf 创建JavaStreamingContext
        JavaStreamingContext jsc = new JavaStreamingContext(conf, Durations.seconds(second));
 
        // 3.配置kafka
        Map<String, Object> kafkaParams = new HashMap<>();
        kafkaParams.put("bootstrap.servers", metadataBrokerList);
        kafkaParams.put("key.deserializer", StringDeserializer.class);
        kafkaParams.put("value.deserializer", StringDeserializer.class);
        kafkaParams.put("group.id", kafkaGroupId);
        kafkaParams.put("auto.offset.reset", autoOffsetReset);
        kafkaParams.put("enable.auto.commit", false);
 
        // 4.kafka主题
        Collection<String> topics = Arrays.asList(kafkaTopics.split(","));
 
        // 5.创建SparkStreaming输入数据来源input Stream
        final JavaInputDStream<ConsumerRecord<String, String>> stream =
                KafkaUtils.createDirectStream(jsc, LocationStrategies.PreferConsistent(),
                        ConsumerStrategies.<String, String> Subscribe(topics, kafkaParams));
 
        // 6.spark rdd转化和行动处理
        stream.foreachRDD(new VoidFunction2<JavaRDD<ConsumerRecord<String, String>>, Time>() {
 
            private static final long serialVersionUID = 1L;
 
            @Override
            public void call(JavaRDD<ConsumerRecord<String, String>> v1, Time v2) throws Exception {
 
                List<ConsumerRecord<String, String>> consumerRecords = v1.collect();
 
                System.out.println("获取消息:" + consumerRecords.size());
 
            }
        });
 
        // 6. 启动执行
        jsc.start();
        // 7. 等待执行停止,如有异常直接抛出并关闭
        jsc.awaitTermination();
    }
}
2. kryo序列化接收器
package com.lm.kryo;
 
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.spark.serializer.KryoRegistrator;
 
import com.esotericsoftware.kryo.Kryo;
 
public class MyRegistrator implements KryoRegistrator {
 
    @Override
    public void registerClasses(Kryo arg0) {
        arg0.register(ConsumerRecord.class);
    }
 
}
四.代码地址
github:https://github.com/a123demi/spring-sparkstreaming-kafka-10
oschina:http://git.oschina.net/a123demi/spring-sparkstreaming-kafka-10