《算法图解》的一些算法笔记
这本书个人觉得它的重点还是在于广度优先搜索算法、Dijkstra算法、动态规划—(背包问题、最长公共子串、最长公共子串序列)、贪婪算法、NP问题的讲解。
按照书上的代码及自己的一些思路,把代码复现了一遍。作篇记录,方便后期自己学习的时候查阅。
BFS算法:
#!/user/bin/python3
# -*- coding:utf-8 -*-
#@Date :2018/10/24 19:06
#@Author :Syler([email protected])
from queue import Queue
graph = {}
que = Queue()
#第一层
graph["you"] = ["BOB", "CLAIRE", "ALICE"]
#第二层
graph["CLAIRE"] = ["THOM", "JONNY"]
graph["ALICE"] = ["PEGGY"]
graph["BOB"] = ["ANUJ", "PEGGY"]
#第三层
graph["THOM"] = []
graph["JONNY"] = []
graph["ANUJ"] = []
graph["PEGGY"] = []
que.put(graph["you"])
processed = []
record = []
while not que.empty():
node = que.get()
need_node = node[0]
tmp_node = node[1:]
if need_node not in processed:
if need_node == "THOM":
print("找到了!")
break
else:
tmp_node.extend(graph[need_node])
que.put(tmp_node)
processed.append(need_node)
d = []
def re(ke):
# 现在的层数是第一层:
if ke == 'you':
d.append(ke)
return 1#这层的键
else:
#把这一次的ke添加到一个列表
d.append(ke)
for k,v in graph.items():
if ke in v:
a = k
break
return re(a)
#如果找到了所需要的人物,那么如何确定它的关系图,即从you到目标人物的最短度量
re("PEGGY")
d.reverse()
print(d)
Dijkstra算法:
#!/user/bin/python3
# -*- coding:utf-8 -*-
#@Date :2018/10/24 20:33
#@Author :Syler([email protected])
def find_lowest_cost_node(costs):
lowest_cost = float("inf")
lowest_cost_node = None
for node in costs:
cost = costs[node]
if cost < lowest_cost and node not in processed:
lowest_cost = cost
lowest_cost_node = node
return lowest_cost_node
graph = {}
graph["start"] = {}
graph["start"]["A"] = 6
graph["start"]["B"] = 2
graph["A"] = {}
graph["A"]["finally"] = 1
graph["B"] = {}
graph["B"]["A"] = 3
graph["B"]["finally"] = 5
graph["finally"] = {}
infinity = float("inf")
costs = {}
costs["A"] = 6
costs["B"] = 2
costs["finally"] = infinity
parents = {}
parents["A"] = "start"
parents["B"] = "start"
parents["finally"] = None
processed = []
node = find_lowest_cost_node(costs)
while node is not None:
cost = costs[node]
neighborhoods = graph[node]
for n in neighborhoods.keys():
new_cost = cost + neighborhoods[n]
if costs[n] > new_cost:
costs[n] = new_cost
parents[n] = node
processed.append(node)
node = find_lowest_cost_node(costs)
print(processed)
暂时先记下这些笔记,后期需要的时候,不断扩充吧。