莫比乌斯函数性质以及反演公式
性质1:
∑ d ∣ n \sum_{d|n} ∑d∣n μ ( d ) = { 1 , if (n = 1) 0 , if (n > 1) \mu{(d)}= \begin{cases} 1, & \text{if (n = 1)}\\ 0, & \text{if (n > 1)} \end{cases} μ(d)={1,0,if (n = 1)if (n > 1)
性质2:
∑ d ∣ n \sum_{d|n} ∑d∣n μ ( d ) d = φ ( n ) n \frac{\mu{(d)}}{d} =\frac{\varphi{(n)}}{n} dμ(d)=nφ(n)
性质3:
μ ( a ∗ b ) = μ ( a ) ∗ μ ( b ) \mu(a*b)=\mu(a)*\mu(b) μ(a∗b)=μ(a)∗μ(b)
反演公式1:
F ( n ) = ∑ d ∣ n f ( d ) = > f ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) F(n)=\sum_{d|n}f(d) =>f(n)=\sum_{d|n}\mu(d)F(\frac{n}{d}) F(n)=∑d∣nf(d)=>f(n)=∑d∣nμ(d)F(dn)
反演公式2:
F ( n ) = ∑ n ∣ d f ( d ) = > f ( n ) = ∑ n ∣ d μ ( d n ) F ( d ) F(n)=\sum_{n|d}f(d) =>f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d) F(n)=∑n∣df(d)=>f(n)=∑n∣dμ(nd)F(d)