感知机算法实现(对偶形式)

误分条件:
感知机算法实现(对偶形式)

import numpy as np

def creatDataSet( ):
    group=np.array([[3,3],[4,3],[1,1]])
    label=[1,1,-1]
    return group,label

def update( x , y , i ):
    global a , b , G
    a[ i ] += 1
    b = b + y
    
def cal( x ,  label , row ):
    global a , b , G
    result=0
    for i in range( len(G[ row ]) ):
        result += label[ i ] * a[ i ] * G[ row ][ i ]
    result += b
    result *= label[ row ]
    return result

def perceptron_func( group , label ):
    global a , b , G
    isFind = False
    n=group.shape[0]
    x_col=group.shape[1]
    a = np.zeros(n,dtype=np.int)	#初始化
    b = 0
    G=np.zeros((n,n),dtype=np.int)

    #计算Gam矩阵
    for i in range( n ):        
        for j in range( n ):          
            G[i][j] = group[ i ][ 0 ] * group[ j ][ 0 ] + group[ i ][ 1 ] * group[ j ][ 1 ]


    while isFind == False:
        for i in range( n ):
            if cal(group[ i ] ,  label , i ) <= 0:
                update(group[ i ] , label[ i ] , i )
                print(a,b)
                break
            elif i == n - 1:
                print(a,b)
                isFind = True
       
                
g , l = creatDataSet( )
perceptron_func(g,l)

算法迭代过程:
感知机算法实现(对偶形式)运行结果:
[1 0 0] 1
[1 0 1] 0
[1 0 2] -1
[1 0 3] -2
[2 0 3] -1
[2 0 4] -2
[2 0 5] -3
[2 0 5] -3