OpenCV学习笔记-轮廓特征
查找轮廓的不同特征,例如面积,周长,重心,边界框等
矩:cv.moments()
轮廓面积:cv.contourArea()
轮廓周长:cv.arcLength()
轮廓近似:cv.approxPolyDp()
边界矩形:cv.boundingRect()
最小外接矩形: cv.minAreaRect() cv.boxPoints()
最小外接圆:cv.minEnclosingCircle()
椭圆拟合:cv.ellipse()
直线拟合:cv.fitLine()
代码被我整合到一起了:
def measure_object(img):
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
ret, thresh = cv.threshold(gray, 127, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
cv.imshow('thresh image', thresh)
copyImage, contours, hireachy = cv.findContours(thresh, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
for i, contour in enumerate(contours):
#轮廓面积
area = cv.contourArea(contour)
print('contour area', area)
#轮廓周长(弧长)
perimeter = cv.arcLength(contour,True)
print('contour perimeter', perimeter)
#轮廓近似
#所得到的近似多边形周长和源轮廓周长之间的最大差值,这个差值越小,近似多边形与源轮廓就越相似
epsilon = 0.01 * perimeter
approx = cv.approxPolyDP(contour, epsilon, True)
print('approx', approx)
cv.drawContours(img, [approx], i, (255, 0, 255), 2)
#图像的矩 可以计算重心,面积等,返回一个字典
M = cv.moments(contour) print(M)
#重心坐标
cx = M['m10']/M['m00']
cy = M['m01']/M['m00']
cv.circle(img, (np.int(cx), np.int(cy)), 3, (0, 255, 255), -1)
print('center of gravity: (%f,%f)' % (cx,cy) )
#边界矩阵
x, y, w, h = cv.boundingRect(contour)
img = cv.rectangle(img, (x, y), (x+w, y+h), (0, 0, 255), 2)
cv.imshow('contours image', img)
#最小外接矩形
rect = cv.minAreaRect(contour)#[(x,y),(w,h),angle]
print(rect)
box = cv.boxPoints(rect) #获取到最小矩阵的四个顶点box:[[x1, y1],[x2, y2],[x3, y3],[x4, y4]]
print(box)
box = np.int0(box) #对box进行处理 这一步一定要进行
print(box) cv.drawContours(img, [box], i, (0, 255, 0), 1)
# [box] #最小外接圆
(x, y), radius = cv.minEnclosingCircle(contour)
center = (int(x), int(y))
cv.circle(img, center, int(radius), (255, 0, 0), 2)
#椭圆拟合,返回值其实就是旋转边界矩形的内切圆
ellipse = cv.fitEllipse(contour)
cv.ellipse(img, ellipse, (0, 255, 255), 2)
#直线拟合
rows, cols = img.shape[:2]
[vx, vy, x, y] = cv.fitLine(contour, cv.DIST_L2, 0, 0.01, 0.01)
left_y = int((-x*vy/vx) + y)
right_y = int(((cols-x)*vy/vx) + y)
cv.line(img, (cols-1, right_y), (0, left_y), (255, 255, 0), 2)
print(i)
cv.imshow('contours image', img)
效果图: